{"title":"由卡普托导数定义的电报方程的拉普拉斯变换配点法","authors":"Mahmut Modanlı, M. E. Koksal","doi":"10.53391/mmnsa.2022.014","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to find approximate solutions to the fractional telegraph differential equation (FTDE) using Laplace transform collocation method (LTCM). The equation is defined by Caputo fractional derivative. A new form of the trial function from the original equation is presented and unknown coefficients in the trial function are computed by using LTCM. Two different initial-boundary value problems are considered as the test problems and approximate solutions are compared with analytical solutions. Numerical results are presented by graphs and tables. From the obtained results, we observe that the method is accurate, effective, and useful.","PeriodicalId":210715,"journal":{"name":"Mathematical Modelling and Numerical Simulation with Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Laplace transform collocation method for telegraph equations defined by Caputo derivative\",\"authors\":\"Mahmut Modanlı, M. E. Koksal\",\"doi\":\"10.53391/mmnsa.2022.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to find approximate solutions to the fractional telegraph differential equation (FTDE) using Laplace transform collocation method (LTCM). The equation is defined by Caputo fractional derivative. A new form of the trial function from the original equation is presented and unknown coefficients in the trial function are computed by using LTCM. Two different initial-boundary value problems are considered as the test problems and approximate solutions are compared with analytical solutions. Numerical results are presented by graphs and tables. From the obtained results, we observe that the method is accurate, effective, and useful.\",\"PeriodicalId\":210715,\"journal\":{\"name\":\"Mathematical Modelling and Numerical Simulation with Applications\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Numerical Simulation with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53391/mmnsa.2022.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Numerical Simulation with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53391/mmnsa.2022.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laplace transform collocation method for telegraph equations defined by Caputo derivative
The purpose of this paper is to find approximate solutions to the fractional telegraph differential equation (FTDE) using Laplace transform collocation method (LTCM). The equation is defined by Caputo fractional derivative. A new form of the trial function from the original equation is presented and unknown coefficients in the trial function are computed by using LTCM. Two different initial-boundary value problems are considered as the test problems and approximate solutions are compared with analytical solutions. Numerical results are presented by graphs and tables. From the obtained results, we observe that the method is accurate, effective, and useful.