{"title":"描述交通网络中的Braess悖论","authors":"J. N. Hagstrom, R. Abrams","doi":"10.1109/ITSC.2001.948769","DOIUrl":null,"url":null,"abstract":"We generalize Braess's (1968) paradoxical example by defining a Braess paradox to occur when the Wardrop equilibrium distribution of traffic flows is not strongly Pareto optimal. We characterize a Braess paradox in terms of the solution to a mathematical program. Examples illustrate unexpected properties of these solutions. We discuss a computational approach to detecting a Braess paradox.","PeriodicalId":173372,"journal":{"name":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Characterizing Braess's paradox for traffic networks\",\"authors\":\"J. N. Hagstrom, R. Abrams\",\"doi\":\"10.1109/ITSC.2001.948769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize Braess's (1968) paradoxical example by defining a Braess paradox to occur when the Wardrop equilibrium distribution of traffic flows is not strongly Pareto optimal. We characterize a Braess paradox in terms of the solution to a mathematical program. Examples illustrate unexpected properties of these solutions. We discuss a computational approach to detecting a Braess paradox.\",\"PeriodicalId\":173372,\"journal\":{\"name\":\"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2001.948769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2001.948769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterizing Braess's paradox for traffic networks
We generalize Braess's (1968) paradoxical example by defining a Braess paradox to occur when the Wardrop equilibrium distribution of traffic flows is not strongly Pareto optimal. We characterize a Braess paradox in terms of the solution to a mathematical program. Examples illustrate unexpected properties of these solutions. We discuss a computational approach to detecting a Braess paradox.