{"title":"基于gan的高质量热图像增强视觉变压器","authors":"M. Marnissi, A. Fathallah","doi":"10.1109/CVPRW59228.2023.00089","DOIUrl":null,"url":null,"abstract":"Generative Adversarial Networks (GANs) have shown an outstanding ability to generate high-quality images with visual realism and similarity to real images. This paper presents a new architecture for thermal image enhancement. Precisely, the strengths of architecture-based vision transformers and generative adversarial networks are exploited. The thermal loss feature introduced in our approach is specifically used to produce high-quality images. Thermal image enhancement also relies on fine-tuning based on visible images, resulting in an overall improvement in image quality. A visual quality metric was used to evaluate the performance of the proposed architecture. Significant improvements were found over the original thermal images and other enhancement methods established on a subset of the KAIST dataset. The performance of the proposed enhancement architecture is also verified on the detection results by obtaining better performance with a considerable margin regarding different versions of the YOLO detector.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAN-based Vision Transformer for High-Quality Thermal Image Enhancement\",\"authors\":\"M. Marnissi, A. Fathallah\",\"doi\":\"10.1109/CVPRW59228.2023.00089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generative Adversarial Networks (GANs) have shown an outstanding ability to generate high-quality images with visual realism and similarity to real images. This paper presents a new architecture for thermal image enhancement. Precisely, the strengths of architecture-based vision transformers and generative adversarial networks are exploited. The thermal loss feature introduced in our approach is specifically used to produce high-quality images. Thermal image enhancement also relies on fine-tuning based on visible images, resulting in an overall improvement in image quality. A visual quality metric was used to evaluate the performance of the proposed architecture. Significant improvements were found over the original thermal images and other enhancement methods established on a subset of the KAIST dataset. The performance of the proposed enhancement architecture is also verified on the detection results by obtaining better performance with a considerable margin regarding different versions of the YOLO detector.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GAN-based Vision Transformer for High-Quality Thermal Image Enhancement
Generative Adversarial Networks (GANs) have shown an outstanding ability to generate high-quality images with visual realism and similarity to real images. This paper presents a new architecture for thermal image enhancement. Precisely, the strengths of architecture-based vision transformers and generative adversarial networks are exploited. The thermal loss feature introduced in our approach is specifically used to produce high-quality images. Thermal image enhancement also relies on fine-tuning based on visible images, resulting in an overall improvement in image quality. A visual quality metric was used to evaluate the performance of the proposed architecture. Significant improvements were found over the original thermal images and other enhancement methods established on a subset of the KAIST dataset. The performance of the proposed enhancement architecture is also verified on the detection results by obtaining better performance with a considerable margin regarding different versions of the YOLO detector.