用SOMs聚类未标记数据改进了标记真实世界数据的分类

R. Dara, S. C. Kremer, D. Stacey
{"title":"用SOMs聚类未标记数据改进了标记真实世界数据的分类","authors":"R. Dara, S. C. Kremer, D. Stacey","doi":"10.1109/IJCNN.2002.1007489","DOIUrl":null,"url":null,"abstract":"We show the use of a self organizing map to cluster unlabeled data and to infer possible labelings from the clusters. Our inferred labels are presented to a multilayer perceptron along with labeled data, performance is improved over using only the labeled data. Results are presented for a number of popular real-world benchmark problems from domains other than text. This shows one way in which unlabeled data can be used to enhance supervised learning in a general-purpose neural network.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Clustering unlabeled data with SOMs improves classification of labeled real-world data\",\"authors\":\"R. Dara, S. C. Kremer, D. Stacey\",\"doi\":\"10.1109/IJCNN.2002.1007489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the use of a self organizing map to cluster unlabeled data and to infer possible labelings from the clusters. Our inferred labels are presented to a multilayer perceptron along with labeled data, performance is improved over using only the labeled data. Results are presented for a number of popular real-world benchmark problems from domains other than text. This shows one way in which unlabeled data can be used to enhance supervised learning in a general-purpose neural network.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

我们展示了使用自组织映射来聚类未标记的数据,并从聚类中推断可能的标记。我们的推断标签与标记数据一起呈现给多层感知器,性能比仅使用标记数据得到改善。本文给出了来自文本以外领域的一些流行的现实世界基准问题的结果。这显示了一种在通用神经网络中使用未标记数据来增强监督学习的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering unlabeled data with SOMs improves classification of labeled real-world data
We show the use of a self organizing map to cluster unlabeled data and to infer possible labelings from the clusters. Our inferred labels are presented to a multilayer perceptron along with labeled data, performance is improved over using only the labeled data. Results are presented for a number of popular real-world benchmark problems from domains other than text. This shows one way in which unlabeled data can be used to enhance supervised learning in a general-purpose neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信