拓扑考虑和平均方法:局部和全局结果之间的联系

I. Polekhin
{"title":"拓扑考虑和平均方法:局部和全局结果之间的联系","authors":"I. Polekhin","doi":"10.1109/NIR50484.2020.9290237","DOIUrl":null,"url":null,"abstract":"In the paper we present an approach to averaging of ordinary differential equations on an infinite time interval. This approach allows one to prove results concerning the existence of a solution of the non-averaged system that is not arbitrarily close to the corresponding solution of the averaged system, but only finitely close to it on an infinite time interval. At the same time, our assumptions on the right-hand side of the system are in some sense less restrictive comparing to the classical results on averaging.","PeriodicalId":274976,"journal":{"name":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological considerations and the method of averaging: a connection between local and global results\",\"authors\":\"I. Polekhin\",\"doi\":\"10.1109/NIR50484.2020.9290237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper we present an approach to averaging of ordinary differential equations on an infinite time interval. This approach allows one to prove results concerning the existence of a solution of the non-averaged system that is not arbitrarily close to the corresponding solution of the averaged system, but only finitely close to it on an infinite time interval. At the same time, our assumptions on the right-hand side of the system are in some sense less restrictive comparing to the classical results on averaging.\",\"PeriodicalId\":274976,\"journal\":{\"name\":\"2020 International Conference Nonlinearity, Information and Robotics (NIR)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference Nonlinearity, Information and Robotics (NIR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NIR50484.2020.9290237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference Nonlinearity, Information and Robotics (NIR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NIR50484.2020.9290237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了在无限时间区间上求常微分方程平均的一种方法。这种方法可以证明非平均系统的解的存在性,该解不是任意地接近于平均系统的对应解,而是在无限时间间隔上有限地接近于它。同时,我们在系统右边的假设在某种程度上比经典的平均结果限制更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological considerations and the method of averaging: a connection between local and global results
In the paper we present an approach to averaging of ordinary differential equations on an infinite time interval. This approach allows one to prove results concerning the existence of a solution of the non-averaged system that is not arbitrarily close to the corresponding solution of the averaged system, but only finitely close to it on an infinite time interval. At the same time, our assumptions on the right-hand side of the system are in some sense less restrictive comparing to the classical results on averaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信