多机器人系统中捕食者躲避的合作群集与学习

H. La, R. Lim, W. Sheng, Jiming Chen
{"title":"多机器人系统中捕食者躲避的合作群集与学习","authors":"H. La, R. Lim, W. Sheng, Jiming Chen","doi":"10.1109/CYBER.2013.6705469","DOIUrl":null,"url":null,"abstract":"In this paper we propose a hybrid system that integrates reinforcement learning and flocking control in order to create an adaptive and intelligent multi-robot system. First, we present a flocking control algorithm that allows multiple mobile robots to move together while avoiding obstacles. Second, we propose a distributed cooperative learning algorithm that can quickly enable the mobile robot network to avoid predator/enemy while maintaining the network connectivity and topology. The convergence of the cooperative learning algorithm is discussed. As a result, the hybrid system of flocking control and cooperative reinforcement learning results in an efficient integration of high level behaviors (discrete states and actions) and low level behaviors (continuous states and actions) for multi-robot cooperation. The simulations are performed to demonstrate the effectiveness of the proposed system.","PeriodicalId":146993,"journal":{"name":"2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Cooperative flocking and learning in multi-robot systems for predator avoidance\",\"authors\":\"H. La, R. Lim, W. Sheng, Jiming Chen\",\"doi\":\"10.1109/CYBER.2013.6705469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a hybrid system that integrates reinforcement learning and flocking control in order to create an adaptive and intelligent multi-robot system. First, we present a flocking control algorithm that allows multiple mobile robots to move together while avoiding obstacles. Second, we propose a distributed cooperative learning algorithm that can quickly enable the mobile robot network to avoid predator/enemy while maintaining the network connectivity and topology. The convergence of the cooperative learning algorithm is discussed. As a result, the hybrid system of flocking control and cooperative reinforcement learning results in an efficient integration of high level behaviors (discrete states and actions) and low level behaviors (continuous states and actions) for multi-robot cooperation. The simulations are performed to demonstrate the effectiveness of the proposed system.\",\"PeriodicalId\":146993,\"journal\":{\"name\":\"2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBER.2013.6705469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER.2013.6705469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在本文中,我们提出了一种结合强化学习和群集控制的混合系统,以创建一个自适应的智能多机器人系统。首先,我们提出了一种群集控制算法,该算法允许多个移动机器人在避开障碍物的同时一起移动。其次,我们提出了一种分布式合作学习算法,该算法可以在保持网络连通性和拓扑结构的同时快速使移动机器人网络避开捕食者/敌人。讨论了合作学习算法的收敛性。因此,集群控制与协同强化学习的混合系统可以有效地整合多机器人合作的高层行为(离散状态和动作)和低层行为(连续状态和动作)。仿真结果验证了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative flocking and learning in multi-robot systems for predator avoidance
In this paper we propose a hybrid system that integrates reinforcement learning and flocking control in order to create an adaptive and intelligent multi-robot system. First, we present a flocking control algorithm that allows multiple mobile robots to move together while avoiding obstacles. Second, we propose a distributed cooperative learning algorithm that can quickly enable the mobile robot network to avoid predator/enemy while maintaining the network connectivity and topology. The convergence of the cooperative learning algorithm is discussed. As a result, the hybrid system of flocking control and cooperative reinforcement learning results in an efficient integration of high level behaviors (discrete states and actions) and low level behaviors (continuous states and actions) for multi-robot cooperation. The simulations are performed to demonstrate the effectiveness of the proposed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信