在推特中监测植物健康威胁的命名实体识别:一个ChouBERT方法

Shufan Jiang, Rafael Angarita, Stéphane Cormier, Francis Rousseaux
{"title":"在推特中监测植物健康威胁的命名实体识别:一个ChouBERT方法","authors":"Shufan Jiang, Rafael Angarita, Stéphane Cormier, Francis Rousseaux","doi":"10.1109/UV56588.2022.10185492","DOIUrl":null,"url":null,"abstract":"An important application scenario of precision agriculture is detecting and measuring crop health threats using sensors and data analysis techniques. However, the textual data are still under-explored among the existing solutions due to the lack of labelled data and fine-grained semantic resources. Recent research suggests that the increasing connectivity of farmers and the emergence of online farming communities make social media like Twitter a participatory platform for detecting unfamiliar plant health events if we can extract essential information from unstructured textual data. ChouBERT is a French pre-trained language model that can identify Tweets concerning observations of plant health issues with generalizability on unseen natural hazards. This paper tackles the lack of labelled data by further studying ChouBERT’s know-how on token-level annotation tasks over small labeled sets.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Named Entity Recognition for Monitoring Plant Health Threats in Tweets: a ChouBERT Approach\",\"authors\":\"Shufan Jiang, Rafael Angarita, Stéphane Cormier, Francis Rousseaux\",\"doi\":\"10.1109/UV56588.2022.10185492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important application scenario of precision agriculture is detecting and measuring crop health threats using sensors and data analysis techniques. However, the textual data are still under-explored among the existing solutions due to the lack of labelled data and fine-grained semantic resources. Recent research suggests that the increasing connectivity of farmers and the emergence of online farming communities make social media like Twitter a participatory platform for detecting unfamiliar plant health events if we can extract essential information from unstructured textual data. ChouBERT is a French pre-trained language model that can identify Tweets concerning observations of plant health issues with generalizability on unseen natural hazards. This paper tackles the lack of labelled data by further studying ChouBERT’s know-how on token-level annotation tasks over small labeled sets.\",\"PeriodicalId\":211011,\"journal\":{\"name\":\"2022 6th International Conference on Universal Village (UV)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th International Conference on Universal Village (UV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UV56588.2022.10185492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精准农业的一个重要应用场景是利用传感器和数据分析技术检测和测量作物健康威胁。然而,由于缺乏标记数据和细粒度语义资源,在现有的解决方案中,对文本数据的探索仍然不足。最近的研究表明,如果我们能从非结构化的文本数据中提取重要信息,农民之间的联系日益紧密,在线农业社区的出现,将使Twitter等社交媒体成为检测不熟悉的植物健康事件的参与性平台。ChouBERT是一个法国预训练的语言模型,可以识别有关植物健康问题的推文,并具有对看不见的自然灾害的普遍性。本文通过进一步研究ChouBERT在小标记集上的标记级注释任务的专有技术来解决标记数据的缺乏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Named Entity Recognition for Monitoring Plant Health Threats in Tweets: a ChouBERT Approach
An important application scenario of precision agriculture is detecting and measuring crop health threats using sensors and data analysis techniques. However, the textual data are still under-explored among the existing solutions due to the lack of labelled data and fine-grained semantic resources. Recent research suggests that the increasing connectivity of farmers and the emergence of online farming communities make social media like Twitter a participatory platform for detecting unfamiliar plant health events if we can extract essential information from unstructured textual data. ChouBERT is a French pre-trained language model that can identify Tweets concerning observations of plant health issues with generalizability on unseen natural hazards. This paper tackles the lack of labelled data by further studying ChouBERT’s know-how on token-level annotation tasks over small labeled sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信