{"title":"求解Pareto特征值互补问题的内点法","authors":"S. Adly, M. Haddou, Manh Hung Le","doi":"10.1080/10556788.2022.2152023","DOIUrl":null,"url":null,"abstract":"In this paper, we propose to solve Pareto eigenvalue complementarity problems by using interior-point methods. Precisely, we focus the study on an adaptation of the Mehrotra Predictor Corrector Method (MPCM) and a Non-Parametric Interior Point Method (NPIPM). We compare these two methods with two alternative methods, namely the Lattice Projection Method (LPM) and the Soft Max Method (SM). On a set of data generated from the Matrix Market, the performance profiles highlight the efficiency of MPCM and NPIPM for solving eigenvalue complementarity problems. We also consider an application to a concrete and large size situation corresponding to a geomechanical fracture problem. Finally, we discuss the extension of MPCM and NPIPM methods to solve quadratic pencil eigenvalue problems under conic constraints.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Interior point methods for solving Pareto eigenvalue complementarity problems\",\"authors\":\"S. Adly, M. Haddou, Manh Hung Le\",\"doi\":\"10.1080/10556788.2022.2152023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose to solve Pareto eigenvalue complementarity problems by using interior-point methods. Precisely, we focus the study on an adaptation of the Mehrotra Predictor Corrector Method (MPCM) and a Non-Parametric Interior Point Method (NPIPM). We compare these two methods with two alternative methods, namely the Lattice Projection Method (LPM) and the Soft Max Method (SM). On a set of data generated from the Matrix Market, the performance profiles highlight the efficiency of MPCM and NPIPM for solving eigenvalue complementarity problems. We also consider an application to a concrete and large size situation corresponding to a geomechanical fracture problem. Finally, we discuss the extension of MPCM and NPIPM methods to solve quadratic pencil eigenvalue problems under conic constraints.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2152023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2152023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interior point methods for solving Pareto eigenvalue complementarity problems
In this paper, we propose to solve Pareto eigenvalue complementarity problems by using interior-point methods. Precisely, we focus the study on an adaptation of the Mehrotra Predictor Corrector Method (MPCM) and a Non-Parametric Interior Point Method (NPIPM). We compare these two methods with two alternative methods, namely the Lattice Projection Method (LPM) and the Soft Max Method (SM). On a set of data generated from the Matrix Market, the performance profiles highlight the efficiency of MPCM and NPIPM for solving eigenvalue complementarity problems. We also consider an application to a concrete and large size situation corresponding to a geomechanical fracture problem. Finally, we discuss the extension of MPCM and NPIPM methods to solve quadratic pencil eigenvalue problems under conic constraints.