{"title":"复杂通用门的新技术映射器","authors":"Meng-Che Wu, A. Dao, Mark Po-Hung Lin","doi":"10.1145/3394885.3431561","DOIUrl":null,"url":null,"abstract":"Complex universal logic gates, which may have higher density and flexibility than basic logic gates and look-up tables (LUT), are useful for cost-effective or security-oriented VLSI design requirements. However, most of the technology mapping algorithms aim to optimize combinational logic with basic standard cells or LUT components. It is desirable to investigate optimal technology mappers for complex universal gates in addition to basic standard cells and LUT components. This paper proposes a novel technology mapper for complex universal gates with a tight integration of the following techniques: Boolean network simulation with permutation classification, supergate library construction, dynamic programming based cut enumeration, Boolean matching with optimal universal cell covering. Experimental results show that the proposed method outperforms the state-of-the-art technology mapper in ABC, in terms of both area and delay.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Technology Mapper for Complex Universal Gates\",\"authors\":\"Meng-Che Wu, A. Dao, Mark Po-Hung Lin\",\"doi\":\"10.1145/3394885.3431561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex universal logic gates, which may have higher density and flexibility than basic logic gates and look-up tables (LUT), are useful for cost-effective or security-oriented VLSI design requirements. However, most of the technology mapping algorithms aim to optimize combinational logic with basic standard cells or LUT components. It is desirable to investigate optimal technology mappers for complex universal gates in addition to basic standard cells and LUT components. This paper proposes a novel technology mapper for complex universal gates with a tight integration of the following techniques: Boolean network simulation with permutation classification, supergate library construction, dynamic programming based cut enumeration, Boolean matching with optimal universal cell covering. Experimental results show that the proposed method outperforms the state-of-the-art technology mapper in ABC, in terms of both area and delay.\",\"PeriodicalId\":186307,\"journal\":{\"name\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3394885.3431561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Technology Mapper for Complex Universal Gates
Complex universal logic gates, which may have higher density and flexibility than basic logic gates and look-up tables (LUT), are useful for cost-effective or security-oriented VLSI design requirements. However, most of the technology mapping algorithms aim to optimize combinational logic with basic standard cells or LUT components. It is desirable to investigate optimal technology mappers for complex universal gates in addition to basic standard cells and LUT components. This paper proposes a novel technology mapper for complex universal gates with a tight integration of the following techniques: Boolean network simulation with permutation classification, supergate library construction, dynamic programming based cut enumeration, Boolean matching with optimal universal cell covering. Experimental results show that the proposed method outperforms the state-of-the-art technology mapper in ABC, in terms of both area and delay.