基于评级时间衰减的推荐CTR预测优化

Andy Maulana Yusuf, A. Wibowo, Kemas Rahmat Saleh
{"title":"基于评级时间衰减的推荐CTR预测优化","authors":"Andy Maulana Yusuf, A. Wibowo, Kemas Rahmat Saleh","doi":"10.1109/IAICT59002.2023.10205904","DOIUrl":null,"url":null,"abstract":"The Click-Through-Rate (CTR) prediction is a significant concern in the advertising industry, and this research aims to address the three open aspects of learning, feature, and bias that require attention in CTR. The research conducted a literature review and identified appropriate methods from previous research to tackle these aspects. The proposed model optimizes learning time, prevents over-fitting using an early stopping strategy, and handles bias recommendations using Rating-Time decay. Testing on user interest in new and unpopular items provides promising results, indicating that the user’s latest preferences align with the latest event for CTR. The study’s findings demonstrate that the proposed model resolves CTR and over-fitting issues and optimizes the learning aspect of CTR models.","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of CTR Prediction in Recommendation with Rating-Time Decay\",\"authors\":\"Andy Maulana Yusuf, A. Wibowo, Kemas Rahmat Saleh\",\"doi\":\"10.1109/IAICT59002.2023.10205904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Click-Through-Rate (CTR) prediction is a significant concern in the advertising industry, and this research aims to address the three open aspects of learning, feature, and bias that require attention in CTR. The research conducted a literature review and identified appropriate methods from previous research to tackle these aspects. The proposed model optimizes learning time, prevents over-fitting using an early stopping strategy, and handles bias recommendations using Rating-Time decay. Testing on user interest in new and unpopular items provides promising results, indicating that the user’s latest preferences align with the latest event for CTR. The study’s findings demonstrate that the proposed model resolves CTR and over-fitting issues and optimizes the learning aspect of CTR models.\",\"PeriodicalId\":339796,\"journal\":{\"name\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT59002.2023.10205904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

点击率(CTR)预测是广告行业关注的一个重要问题,本研究旨在解决CTR中需要注意的三个开放方面:学习、特征和偏见。本研究进行了文献综述,并从以往的研究中确定了适当的方法来解决这些问题。提出的模型优化了学习时间,使用早期停止策略防止过拟合,并使用评级时间衰减处理偏差建议。测试用户对新产品和不受欢迎产品的兴趣提供了有希望的结果,表明用户的最新偏好与最新事件的点击率一致。研究结果表明,所提出的模型解决了CTR和过拟合问题,并优化了CTR模型的学习方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of CTR Prediction in Recommendation with Rating-Time Decay
The Click-Through-Rate (CTR) prediction is a significant concern in the advertising industry, and this research aims to address the three open aspects of learning, feature, and bias that require attention in CTR. The research conducted a literature review and identified appropriate methods from previous research to tackle these aspects. The proposed model optimizes learning time, prevents over-fitting using an early stopping strategy, and handles bias recommendations using Rating-Time decay. Testing on user interest in new and unpopular items provides promising results, indicating that the user’s latest preferences align with the latest event for CTR. The study’s findings demonstrate that the proposed model resolves CTR and over-fitting issues and optimizes the learning aspect of CTR models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信