使用等价分区生成测试模型

Sorour Jahanbin, B. Zamani
{"title":"使用等价分区生成测试模型","authors":"Sorour Jahanbin, B. Zamani","doi":"10.1109/ICCKE.2018.8566335","DOIUrl":null,"url":null,"abstract":"Model transformation, in a simple definition, is a program that accepts a model as input and generates another model as output. Model transformations are the cornerstone of model-driven engineering (MDE), hence testing them and ensuring the correctness of their implementation is a critical task. A challenging aspect of testing model transformations is to generate test models that both conform to their meta-model and satisfy the defined constraints. There exist several solutions for generating test models. Epsilon Model Generation (EMG) is a language for generating appropriate test models. EMG uses random operations for producing test models, hence it is possible that some tests have the same structure and the same value, i.e., they are redundant. In this paper, we propose an approach for generating appropriate test models, i.e., test models which are valuable from the tester's point of view. In this approach, the tester specifies the number of model elements that should be generated in the test model, as well as how they are linked. Our approach is based on the idea of enriching the EMG language with equivalence partitioning technique. The idea of partitioning is that testing a member in an equivalence class is as good as testing the whole class. We have evaluated the proposed method via a case study. The results show the superiority of the proposed approach over EMG.","PeriodicalId":283700,"journal":{"name":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Test Model Generation Using Equivalence Partitioning\",\"authors\":\"Sorour Jahanbin, B. Zamani\",\"doi\":\"10.1109/ICCKE.2018.8566335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model transformation, in a simple definition, is a program that accepts a model as input and generates another model as output. Model transformations are the cornerstone of model-driven engineering (MDE), hence testing them and ensuring the correctness of their implementation is a critical task. A challenging aspect of testing model transformations is to generate test models that both conform to their meta-model and satisfy the defined constraints. There exist several solutions for generating test models. Epsilon Model Generation (EMG) is a language for generating appropriate test models. EMG uses random operations for producing test models, hence it is possible that some tests have the same structure and the same value, i.e., they are redundant. In this paper, we propose an approach for generating appropriate test models, i.e., test models which are valuable from the tester's point of view. In this approach, the tester specifies the number of model elements that should be generated in the test model, as well as how they are linked. Our approach is based on the idea of enriching the EMG language with equivalence partitioning technique. The idea of partitioning is that testing a member in an equivalence class is as good as testing the whole class. We have evaluated the proposed method via a case study. The results show the superiority of the proposed approach over EMG.\",\"PeriodicalId\":283700,\"journal\":{\"name\":\"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE.2018.8566335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 8th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE.2018.8566335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在一个简单的定义中,模型转换是一个接受一个模型作为输入并生成另一个模型作为输出的程序。模型转换是模型驱动工程(MDE)的基石,因此测试它们并确保其实现的正确性是一项关键任务。测试模型转换的一个具有挑战性的方面是生成既符合元模型又满足定义约束的测试模型。有几种生成测试模型的解决方案。Epsilon模型生成(EMG)是一种用于生成适当测试模型的语言。肌电图使用随机操作来生成测试模型,因此可能有些测试具有相同的结构和相同的值,即它们是冗余的。在本文中,我们提出了一种生成适当测试模型的方法,即,从测试人员的角度来看是有价值的测试模型。在这种方法中,测试人员指定应该在测试模型中生成的模型元素的数量,以及它们是如何链接的。我们的方法是基于用等价划分技术丰富肌电图语言的思想。划分的思想是测试等价类中的一个成员与测试整个类一样好。我们通过一个案例研究评估了所提出的方法。结果表明,该方法优于肌电图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Test Model Generation Using Equivalence Partitioning
Model transformation, in a simple definition, is a program that accepts a model as input and generates another model as output. Model transformations are the cornerstone of model-driven engineering (MDE), hence testing them and ensuring the correctness of their implementation is a critical task. A challenging aspect of testing model transformations is to generate test models that both conform to their meta-model and satisfy the defined constraints. There exist several solutions for generating test models. Epsilon Model Generation (EMG) is a language for generating appropriate test models. EMG uses random operations for producing test models, hence it is possible that some tests have the same structure and the same value, i.e., they are redundant. In this paper, we propose an approach for generating appropriate test models, i.e., test models which are valuable from the tester's point of view. In this approach, the tester specifies the number of model elements that should be generated in the test model, as well as how they are linked. Our approach is based on the idea of enriching the EMG language with equivalence partitioning technique. The idea of partitioning is that testing a member in an equivalence class is as good as testing the whole class. We have evaluated the proposed method via a case study. The results show the superiority of the proposed approach over EMG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信