光滑凸伪圆的精确Delaunay图:一般谓词,以及椭圆的实现

I. Emiris, Elias P. Tsigaridas, George M. Tzoumas
{"title":"光滑凸伪圆的精确Delaunay图:一般谓词,以及椭圆的实现","authors":"I. Emiris, Elias P. Tsigaridas, George M. Tzoumas","doi":"10.1145/1629255.1629282","DOIUrl":null,"url":null,"abstract":"We examine the problem of computing exactly the Delaunay graph (and the dual Voronoi diagram) of a set of, possibly intersecting, smooth convex pseudo-circles in the Euclidean plane, given in parametric form. Pseudo-circles are (convex) sites, every pair of which has at most two intersecting points. The Delaunay graph is constructed incrementally. Our first contribution is to propose robust end efficient algorithms for all required predicates, thus generalizing our earlier algorithms for ellipses, and we analyze their algebraic complexity, under the exact computation paradigm. Second, we focus on InCircle, which is the hardest predicate, and express it by a simple sparse 5 X 5 polynomial system, which allows for an efficient implementation by means of successive Sylvester resultants and a new factorization lemma. The third contribution is our cgal-based c++ software for the case of ellipses, which is the first exact implementation for the problem. Our code spends about 98 sec to construct the Delaunay graph of 128 non-intersecting ellipses, when few degeneracies occur. It is faster than the cgal segment Delaunay graph, when ellipses are approximated by k-gons for k > 15.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Exact Delaunay graph of smooth convex pseudo-circles: general predicates, and implementation for ellipses\",\"authors\":\"I. Emiris, Elias P. Tsigaridas, George M. Tzoumas\",\"doi\":\"10.1145/1629255.1629282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the problem of computing exactly the Delaunay graph (and the dual Voronoi diagram) of a set of, possibly intersecting, smooth convex pseudo-circles in the Euclidean plane, given in parametric form. Pseudo-circles are (convex) sites, every pair of which has at most two intersecting points. The Delaunay graph is constructed incrementally. Our first contribution is to propose robust end efficient algorithms for all required predicates, thus generalizing our earlier algorithms for ellipses, and we analyze their algebraic complexity, under the exact computation paradigm. Second, we focus on InCircle, which is the hardest predicate, and express it by a simple sparse 5 X 5 polynomial system, which allows for an efficient implementation by means of successive Sylvester resultants and a new factorization lemma. The third contribution is our cgal-based c++ software for the case of ellipses, which is the first exact implementation for the problem. Our code spends about 98 sec to construct the Delaunay graph of 128 non-intersecting ellipses, when few degeneracies occur. It is faster than the cgal segment Delaunay graph, when ellipses are approximated by k-gons for k > 15.\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629255.1629282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629255.1629282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们研究了在参数形式给出的欧几里得平面上一组可能相交的光滑凸伪圆的精确计算Delaunay图(和对偶Voronoi图)的问题。伪圆是(凸)点,每一对最多有两个交点。Delaunay图是增量构造的。我们的第一个贡献是为所有必需的谓词提出鲁棒的端高效算法,从而推广了我们之前的椭圆算法,并在精确的计算范式下分析了它们的代数复杂性。其次,我们重点讨论了最难的谓词InCircle,并用一个简单的稀疏5 X 5多项式系统来表示它,该系统允许通过连续Sylvester结果和一个新的因式分解引理来有效地实现它。第三个贡献是针对省略号情况的基于cgal的c++软件,这是该问题的第一个精确实现。我们的代码花了大约98秒来构造由128个不相交椭圆组成的Delaunay图,当简并很少发生时。当k > 15时,椭圆近似为k-gons时,它比合法段Delaunay图更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact Delaunay graph of smooth convex pseudo-circles: general predicates, and implementation for ellipses
We examine the problem of computing exactly the Delaunay graph (and the dual Voronoi diagram) of a set of, possibly intersecting, smooth convex pseudo-circles in the Euclidean plane, given in parametric form. Pseudo-circles are (convex) sites, every pair of which has at most two intersecting points. The Delaunay graph is constructed incrementally. Our first contribution is to propose robust end efficient algorithms for all required predicates, thus generalizing our earlier algorithms for ellipses, and we analyze their algebraic complexity, under the exact computation paradigm. Second, we focus on InCircle, which is the hardest predicate, and express it by a simple sparse 5 X 5 polynomial system, which allows for an efficient implementation by means of successive Sylvester resultants and a new factorization lemma. The third contribution is our cgal-based c++ software for the case of ellipses, which is the first exact implementation for the problem. Our code spends about 98 sec to construct the Delaunay graph of 128 non-intersecting ellipses, when few degeneracies occur. It is faster than the cgal segment Delaunay graph, when ellipses are approximated by k-gons for k > 15.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信