四阶非线性扩散方程的双谐波修正正演时间步进方法

A. Bertozzi, N. Ju, Hsiang-Wei Lu
{"title":"四阶非线性扩散方程的双谐波修正正演时间步进方法","authors":"A. Bertozzi, N. Ju, Hsiang-Wei Lu","doi":"10.3934/DCDS.2011.29.1367","DOIUrl":null,"url":null,"abstract":"We consider a class of splitting schemes for fourth order nonlinear diffusion equations. Standard backward-time differencing requires the solution of a higher order elliptic problem, which can be both computationally expensive and work-intensive to code, in higher space dimensions. Recent papers in the literature provide computational evidence that a biharmonic-modified, forward time-stepping method, can provide good results for these problems. We provide a theoretical explanation of the results. For a basic nonlinear ‘thin film’ type equation we prove H 1 stability of the method given very simple boundedness constraints of the numerical solution. For a more general class of long-wave unstable problems, we prove stability and convergence, using only constraints on the smooth solution. Computational examples include both model ‘thin film’ type problems and a quantitative model for electrowetting in a Hele-Shaw cell (Lu et al J. Fluid Mech. 2007). The methods considered here are related to ‘convexity splitting’ methods for gradient flows with nonconvex energies.","PeriodicalId":411750,"journal":{"name":"Discrete & Continuous Dynamical Systems - A","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"A biharmonic-modified forward time stepping\\nmethod for fourth order nonlinear diffusion equations\",\"authors\":\"A. Bertozzi, N. Ju, Hsiang-Wei Lu\",\"doi\":\"10.3934/DCDS.2011.29.1367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of splitting schemes for fourth order nonlinear diffusion equations. Standard backward-time differencing requires the solution of a higher order elliptic problem, which can be both computationally expensive and work-intensive to code, in higher space dimensions. Recent papers in the literature provide computational evidence that a biharmonic-modified, forward time-stepping method, can provide good results for these problems. We provide a theoretical explanation of the results. For a basic nonlinear ‘thin film’ type equation we prove H 1 stability of the method given very simple boundedness constraints of the numerical solution. For a more general class of long-wave unstable problems, we prove stability and convergence, using only constraints on the smooth solution. Computational examples include both model ‘thin film’ type problems and a quantitative model for electrowetting in a Hele-Shaw cell (Lu et al J. Fluid Mech. 2007). The methods considered here are related to ‘convexity splitting’ methods for gradient flows with nonconvex energies.\",\"PeriodicalId\":411750,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - A\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/DCDS.2011.29.1367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/DCDS.2011.29.1367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

考虑一类四阶非线性扩散方程的分裂格式。标准的后向时差要求在更高的空间维度上求解一个高阶椭圆问题,这个问题的计算成本高,编码工作量大。最近的文献提供了计算证据,证明双谐波修正的正演时间步进方法可以为这些问题提供良好的结果。我们对结果提供了一个理论解释。对于一个基本的非线性“薄膜”型方程,给出数值解的极简单有界性约束,证明了该方法的h1稳定性。对于一类更一般的长波不稳定问题,我们只用光滑解上的约束证明了它的稳定性和收敛性。计算实例包括模型“薄膜”型问题和Hele-Shaw电池中电润湿的定量模型(Lu et al . Fluid Mech. 2007)。这里考虑的方法与非凸能量梯度流动的“凸分裂”方法有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A biharmonic-modified forward time stepping method for fourth order nonlinear diffusion equations
We consider a class of splitting schemes for fourth order nonlinear diffusion equations. Standard backward-time differencing requires the solution of a higher order elliptic problem, which can be both computationally expensive and work-intensive to code, in higher space dimensions. Recent papers in the literature provide computational evidence that a biharmonic-modified, forward time-stepping method, can provide good results for these problems. We provide a theoretical explanation of the results. For a basic nonlinear ‘thin film’ type equation we prove H 1 stability of the method given very simple boundedness constraints of the numerical solution. For a more general class of long-wave unstable problems, we prove stability and convergence, using only constraints on the smooth solution. Computational examples include both model ‘thin film’ type problems and a quantitative model for electrowetting in a Hele-Shaw cell (Lu et al J. Fluid Mech. 2007). The methods considered here are related to ‘convexity splitting’ methods for gradient flows with nonconvex energies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信