粗粒度流计算中的容值推测

Nathaniel Azuelos, I. Keidar, A. Zaks
{"title":"粗粒度流计算中的容值推测","authors":"Nathaniel Azuelos, I. Keidar, A. Zaks","doi":"10.1109/IPDPS.2011.54","DOIUrl":null,"url":null,"abstract":"Streaming applications are the subject of growing interest, as the need for fast access to data continues to grow. In this work, we present the design requirements and implementation of coarse-grain value speculation in streaming applications. We explain how this technique can be useful in cases where serial parts of applications constitute bottlenecks, and when slower I/O favors using available prefixes of the data. Contrary to previous work, we show how allowing some tolerance can justify early predictions on a scale of a large window of values. We suggest a methodology for runtime support of speculation, along with the mechanisms required for rollback. We present resource management issues consequent to our technique. We study how validation and speculation frequencies impact the performance of the program. Finally, we present our implementation in the context of the Huffman encoder benchmark, running it in different configurations and on different architectures.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tolerant Value Speculation in Coarse-Grain Streaming Computations\",\"authors\":\"Nathaniel Azuelos, I. Keidar, A. Zaks\",\"doi\":\"10.1109/IPDPS.2011.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Streaming applications are the subject of growing interest, as the need for fast access to data continues to grow. In this work, we present the design requirements and implementation of coarse-grain value speculation in streaming applications. We explain how this technique can be useful in cases where serial parts of applications constitute bottlenecks, and when slower I/O favors using available prefixes of the data. Contrary to previous work, we show how allowing some tolerance can justify early predictions on a scale of a large window of values. We suggest a methodology for runtime support of speculation, along with the mechanisms required for rollback. We present resource management issues consequent to our technique. We study how validation and speculation frequencies impact the performance of the program. Finally, we present our implementation in the context of the Huffman encoder benchmark, running it in different configurations and on different architectures.\",\"PeriodicalId\":355100,\"journal\":{\"name\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Parallel & Distributed Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2011.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着对快速访问数据的需求不断增长,流媒体应用程序越来越受到关注。在这项工作中,我们提出了流应用中粗粒度值推测的设计要求和实现。我们解释了在应用程序的串行部分构成瓶颈的情况下,以及当较慢的I/O倾向于使用可用的数据前缀时,这种技术是如何有用的。与以前的工作相反,我们展示了如何允许一些公差可以证明早期预测在一个大的值窗口范围内是合理的。我们建议在运行时支持推测的方法,以及回滚所需的机制。我们提出了与我们的技术相关的资源管理问题。我们研究了验证和推测频率如何影响程序的性能。最后,我们在Huffman编码器基准测试的背景下展示了我们的实现,在不同的配置和不同的架构上运行它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tolerant Value Speculation in Coarse-Grain Streaming Computations
Streaming applications are the subject of growing interest, as the need for fast access to data continues to grow. In this work, we present the design requirements and implementation of coarse-grain value speculation in streaming applications. We explain how this technique can be useful in cases where serial parts of applications constitute bottlenecks, and when slower I/O favors using available prefixes of the data. Contrary to previous work, we show how allowing some tolerance can justify early predictions on a scale of a large window of values. We suggest a methodology for runtime support of speculation, along with the mechanisms required for rollback. We present resource management issues consequent to our technique. We study how validation and speculation frequencies impact the performance of the program. Finally, we present our implementation in the context of the Huffman encoder benchmark, running it in different configurations and on different architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信