{"title":"用词根作为附加输入特征改进字符级日中神经机器翻译","authors":"Jinyi Zhang, Tadahiro Matsumoto","doi":"10.1109/IALP.2017.8300572","DOIUrl":null,"url":null,"abstract":"In recent years, Neural Machine Translation (NMT) has been proven to get impressive results. While some additional linguistic features of input words improve wordlevel NMT, any additional character features have not been used to improve character-level NMT so far. In this paper, we show that the radicals of Chinese characters (or kanji), as a character feature information, can be easily provide further improvements in the character-level NMT. In experiments on WAT2016 Japanese-Chinese scientific paper excerpt corpus (ASPEC-JP), we find that the proposed method improves the translation quality according to two aspects: perplexity and BLEU. The character-level NMT with the radical input feature's model got a state-of-the-art result of 40.61 BLEU points in the test set, which is an improvement of about 8.6 BLEU points over the best system on the WAT2016 Japanese-to-Chinese translation subtask with ASPEC-JP. The improvements over the character-level NMT with no additional input feature are up to about 1.5 and 1.4 BLEU points in the development-test set and the test set of the corpus, respectively.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Improving character-level Japanese-Chinese neural machine translation with radicals as an additional input feature\",\"authors\":\"Jinyi Zhang, Tadahiro Matsumoto\",\"doi\":\"10.1109/IALP.2017.8300572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Neural Machine Translation (NMT) has been proven to get impressive results. While some additional linguistic features of input words improve wordlevel NMT, any additional character features have not been used to improve character-level NMT so far. In this paper, we show that the radicals of Chinese characters (or kanji), as a character feature information, can be easily provide further improvements in the character-level NMT. In experiments on WAT2016 Japanese-Chinese scientific paper excerpt corpus (ASPEC-JP), we find that the proposed method improves the translation quality according to two aspects: perplexity and BLEU. The character-level NMT with the radical input feature's model got a state-of-the-art result of 40.61 BLEU points in the test set, which is an improvement of about 8.6 BLEU points over the best system on the WAT2016 Japanese-to-Chinese translation subtask with ASPEC-JP. The improvements over the character-level NMT with no additional input feature are up to about 1.5 and 1.4 BLEU points in the development-test set and the test set of the corpus, respectively.\",\"PeriodicalId\":183586,\"journal\":{\"name\":\"2017 International Conference on Asian Language Processing (IALP)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Asian Language Processing (IALP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2017.8300572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving character-level Japanese-Chinese neural machine translation with radicals as an additional input feature
In recent years, Neural Machine Translation (NMT) has been proven to get impressive results. While some additional linguistic features of input words improve wordlevel NMT, any additional character features have not been used to improve character-level NMT so far. In this paper, we show that the radicals of Chinese characters (or kanji), as a character feature information, can be easily provide further improvements in the character-level NMT. In experiments on WAT2016 Japanese-Chinese scientific paper excerpt corpus (ASPEC-JP), we find that the proposed method improves the translation quality according to two aspects: perplexity and BLEU. The character-level NMT with the radical input feature's model got a state-of-the-art result of 40.61 BLEU points in the test set, which is an improvement of about 8.6 BLEU points over the best system on the WAT2016 Japanese-to-Chinese translation subtask with ASPEC-JP. The improvements over the character-level NMT with no additional input feature are up to about 1.5 and 1.4 BLEU points in the development-test set and the test set of the corpus, respectively.