U. Zschieschang, R. Rodel, U. Kraft, K. Takimiya, T. Zaki, F. Letzkus, Jorg Butschke, H. Richter, J. Burghartz, Wei Xiong, B. Murmann, H. Klauk
{"title":"柔性电子用低压有机场效应晶体管","authors":"U. Zschieschang, R. Rodel, U. Kraft, K. Takimiya, T. Zaki, F. Letzkus, Jorg Butschke, H. Richter, J. Burghartz, Wei Xiong, B. Murmann, H. Klauk","doi":"10.1109/BCTM.2014.6981295","DOIUrl":null,"url":null,"abstract":"A process for the fabrication of bottom-gate, top-contact (inverted staggered) organic thin-film transistors (TFTs) with channel lengths as short as 1 μm on flexible plastic substrates has been developed. The TFTs employ vacuum-deposited small-molecule semiconductors and a low-temperature-processed gate dielectric that is sufficiently thin to allow the TFTs to operate with voltages of about 3 V. The p-channel TFTs have an effective field-effect mobility of about 1 cm2/Vs, an on/off ratio of 107, and a signal propagation delay (measured in 11-stage ring oscillators) of 300 ns per stage. For the n-channel TFTs, an effective field-effect mobility of about 0.06 cm2/Vs, an on/off ratio of 106, and a signal propagation delay of 17 μs per stage have been obtained.","PeriodicalId":423269,"journal":{"name":"2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-voltage organic field-effect transistors for flexible electronics\",\"authors\":\"U. Zschieschang, R. Rodel, U. Kraft, K. Takimiya, T. Zaki, F. Letzkus, Jorg Butschke, H. Richter, J. Burghartz, Wei Xiong, B. Murmann, H. Klauk\",\"doi\":\"10.1109/BCTM.2014.6981295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A process for the fabrication of bottom-gate, top-contact (inverted staggered) organic thin-film transistors (TFTs) with channel lengths as short as 1 μm on flexible plastic substrates has been developed. The TFTs employ vacuum-deposited small-molecule semiconductors and a low-temperature-processed gate dielectric that is sufficiently thin to allow the TFTs to operate with voltages of about 3 V. The p-channel TFTs have an effective field-effect mobility of about 1 cm2/Vs, an on/off ratio of 107, and a signal propagation delay (measured in 11-stage ring oscillators) of 300 ns per stage. For the n-channel TFTs, an effective field-effect mobility of about 0.06 cm2/Vs, an on/off ratio of 106, and a signal propagation delay of 17 μs per stage have been obtained.\",\"PeriodicalId\":423269,\"journal\":{\"name\":\"2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCTM.2014.6981295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCTM.2014.6981295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-voltage organic field-effect transistors for flexible electronics
A process for the fabrication of bottom-gate, top-contact (inverted staggered) organic thin-film transistors (TFTs) with channel lengths as short as 1 μm on flexible plastic substrates has been developed. The TFTs employ vacuum-deposited small-molecule semiconductors and a low-temperature-processed gate dielectric that is sufficiently thin to allow the TFTs to operate with voltages of about 3 V. The p-channel TFTs have an effective field-effect mobility of about 1 cm2/Vs, an on/off ratio of 107, and a signal propagation delay (measured in 11-stage ring oscillators) of 300 ns per stage. For the n-channel TFTs, an effective field-effect mobility of about 0.06 cm2/Vs, an on/off ratio of 106, and a signal propagation delay of 17 μs per stage have been obtained.