深度学习结果再现性中的问题

S. Jean-Paul, T. Elseify, I. Obeid, Joseph Picone
{"title":"深度学习结果再现性中的问题","authors":"S. Jean-Paul, T. Elseify, I. Obeid, Joseph Picone","doi":"10.1109/SPMB47826.2019.9037840","DOIUrl":null,"url":null,"abstract":"The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1] . This heterogeneous cluster uses innovative scheduling technology, Slurm [2] , that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2] . We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process.","PeriodicalId":143197,"journal":{"name":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Issues in the Reproducibility of Deep Learning Results\",\"authors\":\"S. Jean-Paul, T. Elseify, I. Obeid, Joseph Picone\",\"doi\":\"10.1109/SPMB47826.2019.9037840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1] . This heterogeneous cluster uses innovative scheduling technology, Slurm [2] , that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2] . We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process.\",\"PeriodicalId\":143197,\"journal\":{\"name\":\"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPMB47826.2019.9037840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB47826.2019.9037840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

Neuronix高性能计算集群允许我们在大数据上进行广泛的机器学习实验[1]。这种异构集群使用创新的调度技术Slurm[2]来管理cpu和图形处理单元(gpu)的网络。GPU农场由各种处理器组成,从低端消费级设备(如Nvidia GTX 970)到高端设备(如GeForce RTX 2080)。这些gpu对我们的研究至关重要,因为它们允许在大量数据资源(如TUH EEG语料库)上执行极其计算密集型的深度学习任务[2]。我们使用TensorFlow[3]作为我们深度学习系统的核心机器学习库,并常规使用多个gpu来加速训练过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Issues in the Reproducibility of Deep Learning Results
The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1] . This heterogeneous cluster uses innovative scheduling technology, Slurm [2] , that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2] . We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信