基于迁移学习的水下机器人目标检测

Chia-Chin Wang, H. Samani
{"title":"基于迁移学习的水下机器人目标检测","authors":"Chia-Chin Wang, H. Samani","doi":"10.1109/ARIS50834.2020.9205774","DOIUrl":null,"url":null,"abstract":"In this paper the usage of Transfer Learning method for object detection in underwater environment is experienced and evaluated. Deep learning method of YOLO is utilized for detection of different types of fish underwater. A ROV equipped with camera is employed for video streaming underwater and the data has been analyzed on the main computer Our experimental results confirmed improvement in the mAP by 4% using transfer learning.","PeriodicalId":423389,"journal":{"name":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Object Detection using Transfer Learning for Underwater Robot\",\"authors\":\"Chia-Chin Wang, H. Samani\",\"doi\":\"10.1109/ARIS50834.2020.9205774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the usage of Transfer Learning method for object detection in underwater environment is experienced and evaluated. Deep learning method of YOLO is utilized for detection of different types of fish underwater. A ROV equipped with camera is employed for video streaming underwater and the data has been analyzed on the main computer Our experimental results confirmed improvement in the mAP by 4% using transfer learning.\",\"PeriodicalId\":423389,\"journal\":{\"name\":\"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARIS50834.2020.9205774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARIS50834.2020.9205774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文对迁移学习方法在水下目标检测中的应用进行了体验和评价。利用YOLO的深度学习方法对水下不同类型的鱼类进行检测。采用带摄像头的ROV进行水下视频流传输,并在主计算机上对数据进行了分析。实验结果表明,采用迁移学习技术,mAP的性能提高了4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object Detection using Transfer Learning for Underwater Robot
In this paper the usage of Transfer Learning method for object detection in underwater environment is experienced and evaluated. Deep learning method of YOLO is utilized for detection of different types of fish underwater. A ROV equipped with camera is employed for video streaming underwater and the data has been analyzed on the main computer Our experimental results confirmed improvement in the mAP by 4% using transfer learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信