扩展CCSDS 123.0-B-1的无损4D图像压缩

Panpan Zhang, Xiuheng Wang, Tiande Gao, Zhenfu Feng, Jie Chen
{"title":"扩展CCSDS 123.0-B-1的无损4D图像压缩","authors":"Panpan Zhang, Xiuheng Wang, Tiande Gao, Zhenfu Feng, Jie Chen","doi":"10.1109/VCIP49819.2020.9301765","DOIUrl":null,"url":null,"abstract":"A 4-dimensional (4D) image can be viewed as a stack of volumetric images over channels of observation depth or temporal frames. This data contains rich information at the cost of high demands for storage and transmission resources due to its large volume. In this paper, we present a lossless 4D image compression algorithm by extending CCSDS-123.0-B-1 standard. Instead of separately compressing the volumetric image at each channel of 4D images, the proposed algorithm efficiently exploits redundancy across the fourth dimension of data. Experiments conducted on two types of 4D images demonstrate the effectiveness of the proposed lossless compression method.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extending CCSDS 123.0-B-1 for Lossless 4D Image Compression\",\"authors\":\"Panpan Zhang, Xiuheng Wang, Tiande Gao, Zhenfu Feng, Jie Chen\",\"doi\":\"10.1109/VCIP49819.2020.9301765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 4-dimensional (4D) image can be viewed as a stack of volumetric images over channels of observation depth or temporal frames. This data contains rich information at the cost of high demands for storage and transmission resources due to its large volume. In this paper, we present a lossless 4D image compression algorithm by extending CCSDS-123.0-B-1 standard. Instead of separately compressing the volumetric image at each channel of 4D images, the proposed algorithm efficiently exploits redundancy across the fourth dimension of data. Experiments conducted on two types of 4D images demonstrate the effectiveness of the proposed lossless compression method.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

四维(4D)图像可以看作是在观测深度或时间帧通道上的体积图像的堆栈。这些数据包含了丰富的信息,但由于数据量大,对存储和传输资源的要求很高。本文提出了一种扩展CCSDS-123.0-B-1标准的4D图像无损压缩算法。该算法不是在四维图像的每个通道上单独压缩体积图像,而是有效地利用了数据的四维冗余。在两种4D图像上进行的实验验证了所提出的无损压缩方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extending CCSDS 123.0-B-1 for Lossless 4D Image Compression
A 4-dimensional (4D) image can be viewed as a stack of volumetric images over channels of observation depth or temporal frames. This data contains rich information at the cost of high demands for storage and transmission resources due to its large volume. In this paper, we present a lossless 4D image compression algorithm by extending CCSDS-123.0-B-1 standard. Instead of separately compressing the volumetric image at each channel of 4D images, the proposed algorithm efficiently exploits redundancy across the fourth dimension of data. Experiments conducted on two types of 4D images demonstrate the effectiveness of the proposed lossless compression method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信