6-PUS颚式机器人的仿真及受咀嚼系统启发的新机构

M. Cong, Haiying Wen, Weiliang Xu
{"title":"6-PUS颚式机器人的仿真及受咀嚼系统启发的新机构","authors":"M. Cong, Haiying Wen, Weiliang Xu","doi":"10.1504/IJBBR.2013.058741","DOIUrl":null,"url":null,"abstract":"A jaw robot based on the 6-PUS parallel mechanism was introduced according to the biomechanical properties of mandibular muscles. For a given mandibular trajectory to be tracked, the inverse kinematics solution is derived and Jacobian matrix formulated from differential kinematics is found. Kinematics performances, such as constant orientation workspace and manipulability are simulated via numerical method. These indices show that the parallel mechanism has enough flexible workspace without singularity, and has a good motion transmission performance for human chewing movement. In order to reproduce jaw motions and mechanics that match the human jaw function truthfully with the conception of bionics, the temporomandibular joints (TMJs) are taken into account. Another novel actuation redundant mechanism for the jaw robot is proposed based on mechanical biomimetic principles, which has four degrees of freedom, but is driven by six actuators.","PeriodicalId":375470,"journal":{"name":"International Journal of Biomechatronics and Biomedical Robotics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of a 6-PUS jaw robot and a new mechanism inspired by masticatory system\",\"authors\":\"M. Cong, Haiying Wen, Weiliang Xu\",\"doi\":\"10.1504/IJBBR.2013.058741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A jaw robot based on the 6-PUS parallel mechanism was introduced according to the biomechanical properties of mandibular muscles. For a given mandibular trajectory to be tracked, the inverse kinematics solution is derived and Jacobian matrix formulated from differential kinematics is found. Kinematics performances, such as constant orientation workspace and manipulability are simulated via numerical method. These indices show that the parallel mechanism has enough flexible workspace without singularity, and has a good motion transmission performance for human chewing movement. In order to reproduce jaw motions and mechanics that match the human jaw function truthfully with the conception of bionics, the temporomandibular joints (TMJs) are taken into account. Another novel actuation redundant mechanism for the jaw robot is proposed based on mechanical biomimetic principles, which has four degrees of freedom, but is driven by six actuators.\",\"PeriodicalId\":375470,\"journal\":{\"name\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomechatronics and Biomedical Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJBBR.2013.058741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomechatronics and Biomedical Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBBR.2013.058741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

根据下颌肌肉的生物力学特性,介绍了一种基于6-PUS并联机构的下颌机器人。对于所要跟踪的给定下颌轨迹,导出了运动学逆解,并由微分运动学推导出雅可比矩阵。通过数值方法模拟了机器人的恒定姿态、工作空间和可操作性等运动学性能。这些指标表明该并联机构具有足够的柔性工作空间,无奇异性,对人体咀嚼运动具有良好的运动传递性能。为了在仿生学的概念下再现真实符合人类颌功能的下颌运动和力学,研究了颞下颌关节(TMJs)。基于机械仿生原理,提出了一种具有4个自由度、由6个作动器驱动的下颌机器人冗余驱动机构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of a 6-PUS jaw robot and a new mechanism inspired by masticatory system
A jaw robot based on the 6-PUS parallel mechanism was introduced according to the biomechanical properties of mandibular muscles. For a given mandibular trajectory to be tracked, the inverse kinematics solution is derived and Jacobian matrix formulated from differential kinematics is found. Kinematics performances, such as constant orientation workspace and manipulability are simulated via numerical method. These indices show that the parallel mechanism has enough flexible workspace without singularity, and has a good motion transmission performance for human chewing movement. In order to reproduce jaw motions and mechanics that match the human jaw function truthfully with the conception of bionics, the temporomandibular joints (TMJs) are taken into account. Another novel actuation redundant mechanism for the jaw robot is proposed based on mechanical biomimetic principles, which has four degrees of freedom, but is driven by six actuators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信