利用实体链接增强微博中的实体识别

Pikakshi Manchanda, E. Fersini, M. Palmonari
{"title":"利用实体链接增强微博中的实体识别","authors":"Pikakshi Manchanda, E. Fersini, M. Palmonari","doi":"10.5220/0005640701470155","DOIUrl":null,"url":null,"abstract":"The Web of Data provides abundant knowledge wherein objects or entities are described by means of properties and their relationships with other objects or entities. This knowledge is used extensively by the research community for Information Extraction tasks such as Named Entity Recognition (NER) and Linking (NEL) to make sense of data. Named entities can be identified from a variety of textual formats which are further linked to corresponding resources in the Web of Data. These tasks of entity recognition and linking are, however, cast as distinct problems in the state-of-the-art, thereby, overlooking the fact that performance of entity recognition affects the performance of entity linking. The focus of this paper is to improve the performance of entity recognition on a particular textual format, viz, microblog posts by disambiguating the named entities with resources in a Knowledge Base (KB). We propose an unsupervised learning approach to jointly improve the performance of entity recognition and, thus, the whole system by leveraging the results of disambiguated entities.","PeriodicalId":102743,"journal":{"name":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Leveraging Entity Linking to enhance Entity Recognition in microblogs\",\"authors\":\"Pikakshi Manchanda, E. Fersini, M. Palmonari\",\"doi\":\"10.5220/0005640701470155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Web of Data provides abundant knowledge wherein objects or entities are described by means of properties and their relationships with other objects or entities. This knowledge is used extensively by the research community for Information Extraction tasks such as Named Entity Recognition (NER) and Linking (NEL) to make sense of data. Named entities can be identified from a variety of textual formats which are further linked to corresponding resources in the Web of Data. These tasks of entity recognition and linking are, however, cast as distinct problems in the state-of-the-art, thereby, overlooking the fact that performance of entity recognition affects the performance of entity linking. The focus of this paper is to improve the performance of entity recognition on a particular textual format, viz, microblog posts by disambiguating the named entities with resources in a Knowledge Base (KB). We propose an unsupervised learning approach to jointly improve the performance of entity recognition and, thus, the whole system by leveraging the results of disambiguated entities.\",\"PeriodicalId\":102743,\"journal\":{\"name\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005640701470155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005640701470155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

数据网络提供了丰富的知识,其中对象或实体通过属性及其与其他对象或实体的关系来描述。这些知识被研究社区广泛用于信息提取任务,如命名实体识别(NER)和链接(NEL),以使数据有意义。命名实体可以从各种文本格式中识别出来,这些文本格式进一步链接到数据网络中的相应资源。然而,这些实体识别和链接的任务在最先进的技术中被视为不同的问题,从而忽略了实体识别性能影响实体链接性能的事实。本文的重点是通过在知识库(KB)中消除命名实体与资源的歧义来提高对特定文本格式(即微博帖子)的实体识别性能。我们提出了一种无监督学习方法,通过利用消歧实体的结果来共同提高实体识别的性能,从而提高整个系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Entity Linking to enhance Entity Recognition in microblogs
The Web of Data provides abundant knowledge wherein objects or entities are described by means of properties and their relationships with other objects or entities. This knowledge is used extensively by the research community for Information Extraction tasks such as Named Entity Recognition (NER) and Linking (NEL) to make sense of data. Named entities can be identified from a variety of textual formats which are further linked to corresponding resources in the Web of Data. These tasks of entity recognition and linking are, however, cast as distinct problems in the state-of-the-art, thereby, overlooking the fact that performance of entity recognition affects the performance of entity linking. The focus of this paper is to improve the performance of entity recognition on a particular textual format, viz, microblog posts by disambiguating the named entities with resources in a Knowledge Base (KB). We propose an unsupervised learning approach to jointly improve the performance of entity recognition and, thus, the whole system by leveraging the results of disambiguated entities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信