无卫星信号下组合导航系统校正研究

{"title":"无卫星信号下组合导航系统校正研究","authors":"","doi":"10.36652/0869-4931-2021-75-11-510-515","DOIUrl":null,"url":null,"abstract":"The schemes of navigation systems correction are considered. The operation mode of the aircraft during navigation is analyzed. An adaptive modification of the linear Kalman filter is used to correct the navigation information. An algorithm for predicting a correction signal based on a neural network in the event of a loss of a SNS correction signal is formed. Experimental results show the effectiveness of the algorithm.\n\nKeywords\naircraft; inertial navigation system; satellite system; Kalman filter; neural networks; genetic algorithm","PeriodicalId":309803,"journal":{"name":"Automation. Modern Techologies","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studies of the integrated navigation system correction in the absence of a satellite signal\",\"authors\":\"\",\"doi\":\"10.36652/0869-4931-2021-75-11-510-515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The schemes of navigation systems correction are considered. The operation mode of the aircraft during navigation is analyzed. An adaptive modification of the linear Kalman filter is used to correct the navigation information. An algorithm for predicting a correction signal based on a neural network in the event of a loss of a SNS correction signal is formed. Experimental results show the effectiveness of the algorithm.\\n\\nKeywords\\naircraft; inertial navigation system; satellite system; Kalman filter; neural networks; genetic algorithm\",\"PeriodicalId\":309803,\"journal\":{\"name\":\"Automation. Modern Techologies\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation. Modern Techologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36652/0869-4931-2021-75-11-510-515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation. Modern Techologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36652/0869-4931-2021-75-11-510-515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了导航系统校正方案。分析了飞行器在航行过程中的操作方式。采用自适应修正的线性卡尔曼滤波对导航信息进行校正。形成了一种在SNS校正信号丢失的情况下基于神经网络预测校正信号的算法。实验结果表明了算法的有效性。关键词:飞机;惯性导航系统;卫星系统;卡尔曼滤波器;神经网络;遗传算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Studies of the integrated navigation system correction in the absence of a satellite signal
The schemes of navigation systems correction are considered. The operation mode of the aircraft during navigation is analyzed. An adaptive modification of the linear Kalman filter is used to correct the navigation information. An algorithm for predicting a correction signal based on a neural network in the event of a loss of a SNS correction signal is formed. Experimental results show the effectiveness of the algorithm. Keywords aircraft; inertial navigation system; satellite system; Kalman filter; neural networks; genetic algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信