量子Toffoli门的硬件意识优化

M. Bowman, P. Gokhale, Jeffrey Larson, Ji Liu, Martin Suchara
{"title":"量子Toffoli门的硬件意识优化","authors":"M. Bowman, P. Gokhale, Jeffrey Larson, Ji Liu, Martin Suchara","doi":"10.1145/3609229","DOIUrl":null,"url":null,"abstract":"While quantum computing holds great potential in combinatorial optimization, electronic structure calculation, and number theory, the current era of quantum computing is limited by noisy hardware. Many quantum compilation approaches can mitigate the effects of imperfect hardware by optimizing quantum circuits for objectives such as critical path length. Few approaches consider quantum circuits in terms of the set of vendor-calibrated operations (i.e., native gates) available on target hardware. This manuscript expands the analytical and numerical approaches for optimizing quantum circuits at this abstraction level. We present a procedure for combining the strengths of analytical native gate-level optimization with numerical optimization. Although we focus on optimizing Toffoli gates on the IBMQ native gate set, the methods presented are generalizable to any gate and superconducting qubit architecture. Our optimized Toffoli gate implementation demonstrates an 18% reduction in infidelity compared with the canonical implementation as benchmarked on IBM Jakarta with quantum process tomography. Assuming the inclusion of multi-qubit cross-resonance (MCR) gates in the IBMQ native gate set, we produce Toffoli implementations with only six multi-qubit gates, a 25% reduction from the canonical eight multi-qubit implementations for linearly connected qubits.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hardware-Conscious Optimization of the Quantum Toffoli Gate\",\"authors\":\"M. Bowman, P. Gokhale, Jeffrey Larson, Ji Liu, Martin Suchara\",\"doi\":\"10.1145/3609229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While quantum computing holds great potential in combinatorial optimization, electronic structure calculation, and number theory, the current era of quantum computing is limited by noisy hardware. Many quantum compilation approaches can mitigate the effects of imperfect hardware by optimizing quantum circuits for objectives such as critical path length. Few approaches consider quantum circuits in terms of the set of vendor-calibrated operations (i.e., native gates) available on target hardware. This manuscript expands the analytical and numerical approaches for optimizing quantum circuits at this abstraction level. We present a procedure for combining the strengths of analytical native gate-level optimization with numerical optimization. Although we focus on optimizing Toffoli gates on the IBMQ native gate set, the methods presented are generalizable to any gate and superconducting qubit architecture. Our optimized Toffoli gate implementation demonstrates an 18% reduction in infidelity compared with the canonical implementation as benchmarked on IBM Jakarta with quantum process tomography. Assuming the inclusion of multi-qubit cross-resonance (MCR) gates in the IBMQ native gate set, we produce Toffoli implementations with only six multi-qubit gates, a 25% reduction from the canonical eight multi-qubit implementations for linearly connected qubits.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3609229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

虽然量子计算在组合优化、电子结构计算和数论方面具有巨大潜力,但当前的量子计算时代受到硬件噪声的限制。许多量子编译方法可以通过优化量子电路来达到关键路径长度等目标,从而减轻硬件不完善的影响。很少有方法根据目标硬件上可用的供应商校准操作集(即本机门)来考虑量子电路。本文扩展了在这个抽象层次上优化量子电路的分析和数值方法。我们提出了一种将解析原生门级优化与数值优化相结合的方法。虽然我们的重点是在IBMQ原生门集上优化Toffoli门,但所提出的方法可推广到任何门和超导量子比特体系结构。与在IBM Jakarta上使用量子过程断层扫描进行基准测试的规范实现相比,我们优化的Toffoli门实现显示不忠减少了18%。假设在IBMQ原生门集中包含多量子位交叉共振(MCR)门,我们仅使用6个多量子位门生成Toffoli实现,比线性连接量子位的标准8个多量子位实现减少25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware-Conscious Optimization of the Quantum Toffoli Gate
While quantum computing holds great potential in combinatorial optimization, electronic structure calculation, and number theory, the current era of quantum computing is limited by noisy hardware. Many quantum compilation approaches can mitigate the effects of imperfect hardware by optimizing quantum circuits for objectives such as critical path length. Few approaches consider quantum circuits in terms of the set of vendor-calibrated operations (i.e., native gates) available on target hardware. This manuscript expands the analytical and numerical approaches for optimizing quantum circuits at this abstraction level. We present a procedure for combining the strengths of analytical native gate-level optimization with numerical optimization. Although we focus on optimizing Toffoli gates on the IBMQ native gate set, the methods presented are generalizable to any gate and superconducting qubit architecture. Our optimized Toffoli gate implementation demonstrates an 18% reduction in infidelity compared with the canonical implementation as benchmarked on IBM Jakarta with quantum process tomography. Assuming the inclusion of multi-qubit cross-resonance (MCR) gates in the IBMQ native gate set, we produce Toffoli implementations with only six multi-qubit gates, a 25% reduction from the canonical eight multi-qubit implementations for linearly connected qubits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信