{"title":"分类负素数欧拉特征的边双正则映射","authors":"Olivia Reade, J. Širáň","doi":"10.26493/2590-9770.1392.f9a","DOIUrl":null,"url":null,"abstract":"An edge-biregular map arises as a smooth normal quotient of a unique index-two subgroup of a full triangle group acting with two edge-orbits. We give a classification of all finite edge-biregular maps on surfaces of negative prime Euler characteristic.","PeriodicalId":236892,"journal":{"name":"Art Discret. Appl. Math.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Classifying edge-biregular maps of negative prime Euler characteristic\",\"authors\":\"Olivia Reade, J. Širáň\",\"doi\":\"10.26493/2590-9770.1392.f9a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An edge-biregular map arises as a smooth normal quotient of a unique index-two subgroup of a full triangle group acting with two edge-orbits. We give a classification of all finite edge-biregular maps on surfaces of negative prime Euler characteristic.\",\"PeriodicalId\":236892,\"journal\":{\"name\":\"Art Discret. Appl. Math.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Art Discret. Appl. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/2590-9770.1392.f9a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Art Discret. Appl. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/2590-9770.1392.f9a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classifying edge-biregular maps of negative prime Euler characteristic
An edge-biregular map arises as a smooth normal quotient of a unique index-two subgroup of a full triangle group acting with two edge-orbits. We give a classification of all finite edge-biregular maps on surfaces of negative prime Euler characteristic.