基于遗传算法的太阳能集成与优化经济调度——以阿布扎比为例

M. Akmal, Samr Ali, Yasmina Alkhalil, N. Iqbal, Salim Alzaabi
{"title":"基于遗传算法的太阳能集成与优化经济调度——以阿布扎比为例","authors":"M. Akmal, Samr Ali, Yasmina Alkhalil, N. Iqbal, Salim Alzaabi","doi":"10.1109/ISGT.2017.8085990","DOIUrl":null,"url":null,"abstract":"The United Arab Emirates is focusing on cultivating Renewable Energy (RE) to meet its growing power demand. This also brings power planning to the forefront in regards to keen interests in renewable constrained economic dispatch. This paper takes note of UAE's vision in incorporating a better energy mix of Renewable Energy (RE), nuclear, hybrid system along with the existing power plants mostly utilizing natural gas; with further attention for a sound economic dispatch scenario. The paper describes economic dispatch and delves into the usage of Genetic Algorithm to optimize the proposed system of thermal plants and solar systems. The paper explains the problem formulation, describes the system used, and illustrates the results achieved. The aim of the research is in line with the objective function to minimize the total costs of production and to serve the purpose of integrating renewable energy into the traditional power production in UAE. The generation mix scenarios are assessed using genetic algorithm using MATLAB simulation for the optimization problem.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integration of solar energy and optimized economic dispatch using genetic algorithm: A case-study of Abu Dhabi\",\"authors\":\"M. Akmal, Samr Ali, Yasmina Alkhalil, N. Iqbal, Salim Alzaabi\",\"doi\":\"10.1109/ISGT.2017.8085990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The United Arab Emirates is focusing on cultivating Renewable Energy (RE) to meet its growing power demand. This also brings power planning to the forefront in regards to keen interests in renewable constrained economic dispatch. This paper takes note of UAE's vision in incorporating a better energy mix of Renewable Energy (RE), nuclear, hybrid system along with the existing power plants mostly utilizing natural gas; with further attention for a sound economic dispatch scenario. The paper describes economic dispatch and delves into the usage of Genetic Algorithm to optimize the proposed system of thermal plants and solar systems. The paper explains the problem formulation, describes the system used, and illustrates the results achieved. The aim of the research is in line with the objective function to minimize the total costs of production and to serve the purpose of integrating renewable energy into the traditional power production in UAE. The generation mix scenarios are assessed using genetic algorithm using MATLAB simulation for the optimization problem.\",\"PeriodicalId\":296398,\"journal\":{\"name\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2017.8085990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8085990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

阿联酋正致力于发展可再生能源(RE),以满足日益增长的电力需求。这也使电力规划在可再生能源约束经济调度方面受到了极大的关注。本文注意到阿联酋在将可再生能源(RE)、核能、混合动力系统与现有主要利用天然气的发电厂结合起来的更好的能源组合方面的愿景;进一步关注健全的经济调度方案。本文介绍了经济调度问题,并探讨了利用遗传算法对热电厂和太阳能系统进行优化的方法。本文解释了问题的表述,描述了所使用的系统,并举例说明了所取得的结果。本研究的目的是符合生产总成本最小的目标函数,服务于阿联酋将可再生能源纳入传统电力生产的目的。采用遗传算法对混合发电方案进行了评估,并对优化问题进行了MATLAB仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of solar energy and optimized economic dispatch using genetic algorithm: A case-study of Abu Dhabi
The United Arab Emirates is focusing on cultivating Renewable Energy (RE) to meet its growing power demand. This also brings power planning to the forefront in regards to keen interests in renewable constrained economic dispatch. This paper takes note of UAE's vision in incorporating a better energy mix of Renewable Energy (RE), nuclear, hybrid system along with the existing power plants mostly utilizing natural gas; with further attention for a sound economic dispatch scenario. The paper describes economic dispatch and delves into the usage of Genetic Algorithm to optimize the proposed system of thermal plants and solar systems. The paper explains the problem formulation, describes the system used, and illustrates the results achieved. The aim of the research is in line with the objective function to minimize the total costs of production and to serve the purpose of integrating renewable energy into the traditional power production in UAE. The generation mix scenarios are assessed using genetic algorithm using MATLAB simulation for the optimization problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信