一种手势操纵虚拟现实环境系统

A. Clark, Deshendran Moodley
{"title":"一种手势操纵虚拟现实环境系统","authors":"A. Clark, Deshendran Moodley","doi":"10.1145/2987491.2987511","DOIUrl":null,"url":null,"abstract":"Extensive research has been done using machine learning techniques for hand gesture recognition (HGR) using camera-based devices; such as the Leap Motion Controller (LMC). However, limited research has investigated machine learning techniques for HGR in virtual reality applications (VR). This paper reports on the design, implementation, and evaluation of a static HGR system for VR applications using the LMC. The gesture recognition system incorporated a lightweight feature vector of five normalized tip-to-palm distances and a k-nearest neighbour (kNN) classifier. The system was evaluated in terms of response time, accuracy and usability using a case-study VR stellar data visualization application created in the Unreal Engine 4. An average gesture classification time of 0.057ms with an accuracy of 82.5% was achieved on four distinct gestures, which is comparable with previous results from Sign Language recognition systems. This shows the potential of HGR machine learning techniques applied to VR, which were previously applied to non-VR scenarios such as Sign Language recognition.","PeriodicalId":269578,"journal":{"name":"Research Conference of the South African Institute of Computer Scientists and Information Technologists","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A System for a Hand Gesture-Manipulated Virtual Reality Environment\",\"authors\":\"A. Clark, Deshendran Moodley\",\"doi\":\"10.1145/2987491.2987511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensive research has been done using machine learning techniques for hand gesture recognition (HGR) using camera-based devices; such as the Leap Motion Controller (LMC). However, limited research has investigated machine learning techniques for HGR in virtual reality applications (VR). This paper reports on the design, implementation, and evaluation of a static HGR system for VR applications using the LMC. The gesture recognition system incorporated a lightweight feature vector of five normalized tip-to-palm distances and a k-nearest neighbour (kNN) classifier. The system was evaluated in terms of response time, accuracy and usability using a case-study VR stellar data visualization application created in the Unreal Engine 4. An average gesture classification time of 0.057ms with an accuracy of 82.5% was achieved on four distinct gestures, which is comparable with previous results from Sign Language recognition systems. This shows the potential of HGR machine learning techniques applied to VR, which were previously applied to non-VR scenarios such as Sign Language recognition.\",\"PeriodicalId\":269578,\"journal\":{\"name\":\"Research Conference of the South African Institute of Computer Scientists and Information Technologists\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Conference of the South African Institute of Computer Scientists and Information Technologists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2987491.2987511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Conference of the South African Institute of Computer Scientists and Information Technologists","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987491.2987511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

使用基于摄像头的设备使用机器学习技术进行手势识别(HGR)进行了广泛的研究;例如Leap Motion Controller (LMC)。然而,对虚拟现实应用中HGR的机器学习技术的研究有限。本文介绍了一种基于LMC的静态HGR系统的设计、实现和评估。手势识别系统结合了5个标准化指尖到手掌距离的轻量级特征向量和k最近邻(kNN)分类器。通过在虚幻引擎4中创建的案例研究VR恒星数据可视化应用程序,对系统的响应时间、准确性和可用性进行了评估。四种不同手势的平均分类时间为0.057ms,准确率为82.5%,与之前的手语识别结果相当。这显示了HGR机器学习技术应用于VR的潜力,这些技术以前被应用于非VR场景,如手语识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A System for a Hand Gesture-Manipulated Virtual Reality Environment
Extensive research has been done using machine learning techniques for hand gesture recognition (HGR) using camera-based devices; such as the Leap Motion Controller (LMC). However, limited research has investigated machine learning techniques for HGR in virtual reality applications (VR). This paper reports on the design, implementation, and evaluation of a static HGR system for VR applications using the LMC. The gesture recognition system incorporated a lightweight feature vector of five normalized tip-to-palm distances and a k-nearest neighbour (kNN) classifier. The system was evaluated in terms of response time, accuracy and usability using a case-study VR stellar data visualization application created in the Unreal Engine 4. An average gesture classification time of 0.057ms with an accuracy of 82.5% was achieved on four distinct gestures, which is comparable with previous results from Sign Language recognition systems. This shows the potential of HGR machine learning techniques applied to VR, which were previously applied to non-VR scenarios such as Sign Language recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信