基于粒子的多智能体学习算法

Philip R. Cook, M. Goodrich
{"title":"基于粒子的多智能体学习算法","authors":"Philip R. Cook, M. Goodrich","doi":"10.1109/ICMLA.2010.15","DOIUrl":null,"url":null,"abstract":"Learning is one way to determine how agents should act, but learning in multi-agent systems is more difficult than in single-agent systems because other learning agents modify their behavior. We introduce a particle-based algorithm called MMM-PHC. MMM-PHC promotes convergence to Nash equilibria in matrix games using the ideas of maxim in strategies and partial commitment. Partial commitment is implemented by restricting policies to a simplex. Simulations show that MMM-PHC performs on a larger class of games than WoLFPHC.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MMM-PHC: A Particle-Based Multi-Agent Learning Algorithm\",\"authors\":\"Philip R. Cook, M. Goodrich\",\"doi\":\"10.1109/ICMLA.2010.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning is one way to determine how agents should act, but learning in multi-agent systems is more difficult than in single-agent systems because other learning agents modify their behavior. We introduce a particle-based algorithm called MMM-PHC. MMM-PHC promotes convergence to Nash equilibria in matrix games using the ideas of maxim in strategies and partial commitment. Partial commitment is implemented by restricting policies to a simplex. Simulations show that MMM-PHC performs on a larger class of games than WoLFPHC.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

学习是确定智能体应该如何行动的一种方法,但在多智能体系统中学习比在单智能体系统中更难,因为其他学习智能体会修改它们的行为。我们介绍了一种基于粒子的算法,称为MMM-PHC。hmm - phc利用策略的最大化和部分承诺的思想促进矩阵博弈收敛到纳什均衡。部分承诺是通过将策略限制到一个简单体来实现的。仿真表明,mm - phc比WoLFPHC在更大的游戏类别上运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MMM-PHC: A Particle-Based Multi-Agent Learning Algorithm
Learning is one way to determine how agents should act, but learning in multi-agent systems is more difficult than in single-agent systems because other learning agents modify their behavior. We introduce a particle-based algorithm called MMM-PHC. MMM-PHC promotes convergence to Nash equilibria in matrix games using the ideas of maxim in strategies and partial commitment. Partial commitment is implemented by restricting policies to a simplex. Simulations show that MMM-PHC performs on a larger class of games than WoLFPHC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信