分析了3D打印材料Tango + FLX930在自折叠结构中的应用

Akeel A. Abtan, R. Richardson, B. Thomas
{"title":"分析了3D打印材料Tango + FLX930在自折叠结构中的应用","authors":"Akeel A. Abtan, R. Richardson, B. Thomas","doi":"10.1109/ICSAE.2016.7810171","DOIUrl":null,"url":null,"abstract":"Self-folding is the ability of the structure to fold and/or unfold without human intervention or any application of external manipulation. It is known that the structure of folding object consists of two essential parts. These parts are the faces and the creases. In this paper, it is assumed that the faces could be built by using solid materials, and the crease lines can be built using soft material which provides a high bent ability. Furthermore, these two materials should be combined built without using any connections between them. Fortunately, the 3D printer provides this capability. It can print two types of different materials at the same time for the same structure. Therefore, a 3D printer is chosen to fabricate a folding structure using two types of material. These types are the Vero for solid faces and Tango plus FLX930 for the soft creases lines. The soft material at hinge part (creases lines) subjected to the load directly when the structure folds. It should have a clear view of the mechanical properties of this material. Therefore, several mechanical tests for Tango FLX930 material are operated to calculate its mechanical properties and find the force that required to fold it.","PeriodicalId":214121,"journal":{"name":"2016 International Conference for Students on Applied Engineering (ICSAE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analyzing the 3D printed material Tango plus FLX930 for using in self-folding structure\",\"authors\":\"Akeel A. Abtan, R. Richardson, B. Thomas\",\"doi\":\"10.1109/ICSAE.2016.7810171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-folding is the ability of the structure to fold and/or unfold without human intervention or any application of external manipulation. It is known that the structure of folding object consists of two essential parts. These parts are the faces and the creases. In this paper, it is assumed that the faces could be built by using solid materials, and the crease lines can be built using soft material which provides a high bent ability. Furthermore, these two materials should be combined built without using any connections between them. Fortunately, the 3D printer provides this capability. It can print two types of different materials at the same time for the same structure. Therefore, a 3D printer is chosen to fabricate a folding structure using two types of material. These types are the Vero for solid faces and Tango plus FLX930 for the soft creases lines. The soft material at hinge part (creases lines) subjected to the load directly when the structure folds. It should have a clear view of the mechanical properties of this material. Therefore, several mechanical tests for Tango FLX930 material are operated to calculate its mechanical properties and find the force that required to fold it.\",\"PeriodicalId\":214121,\"journal\":{\"name\":\"2016 International Conference for Students on Applied Engineering (ICSAE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference for Students on Applied Engineering (ICSAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAE.2016.7810171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference for Students on Applied Engineering (ICSAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAE.2016.7810171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

自折叠是指结构在没有人为干预或任何外部操纵的情况下折叠和/或展开的能力。众所周知,折叠物体的结构由两个基本部分组成。这些部分是面和折痕。在本文中,假设面可以使用固体材料构建,折痕线可以使用具有高弯曲能力的软材料构建。此外,这两种材料应该结合起来建造,而不使用它们之间的任何连接。幸运的是,3D打印机提供了这种功能。可对同一结构同时打印两种不同材料。因此,选择一台3D打印机来制造使用两种材料的折叠结构。这些类型是Vero坚实的面和Tango加上FLX930的软折痕线。当结构折叠时,铰链部分的软质材料(折痕线)直接承受载荷。它应该对这种材料的机械性能有一个清晰的认识。因此,对Tango FLX930材料进行了多次力学测试,以计算其机械性能并找到折叠所需的力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the 3D printed material Tango plus FLX930 for using in self-folding structure
Self-folding is the ability of the structure to fold and/or unfold without human intervention or any application of external manipulation. It is known that the structure of folding object consists of two essential parts. These parts are the faces and the creases. In this paper, it is assumed that the faces could be built by using solid materials, and the crease lines can be built using soft material which provides a high bent ability. Furthermore, these two materials should be combined built without using any connections between them. Fortunately, the 3D printer provides this capability. It can print two types of different materials at the same time for the same structure. Therefore, a 3D printer is chosen to fabricate a folding structure using two types of material. These types are the Vero for solid faces and Tango plus FLX930 for the soft creases lines. The soft material at hinge part (creases lines) subjected to the load directly when the structure folds. It should have a clear view of the mechanical properties of this material. Therefore, several mechanical tests for Tango FLX930 material are operated to calculate its mechanical properties and find the force that required to fold it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信