具有链路容量和先进先出约束的动态用户均衡问题

H. Chen, S. Lui, Chia-Wei Chang
{"title":"具有链路容量和先进先出约束的动态用户均衡问题","authors":"H. Chen, S. Lui, Chia-Wei Chang","doi":"10.1109/ITSC.2002.1041262","DOIUrl":null,"url":null,"abstract":"The paper incorporates both the link capacity and first-in-first-out constraints into the dynamic user equilibrium problem. The corresponding dynamic equilibrium conditions for each origin-destination pair and time interval state that the generalized route travel times experienced by travelers are equal and minimal. A nested Lagrangian method embedding the gradient projection algorithm is then proposed and demonstrated with a numerical example.","PeriodicalId":365722,"journal":{"name":"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic user equilibrium problem with link capacity and first-in-first-out constraints\",\"authors\":\"H. Chen, S. Lui, Chia-Wei Chang\",\"doi\":\"10.1109/ITSC.2002.1041262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper incorporates both the link capacity and first-in-first-out constraints into the dynamic user equilibrium problem. The corresponding dynamic equilibrium conditions for each origin-destination pair and time interval state that the generalized route travel times experienced by travelers are equal and minimal. A nested Lagrangian method embedding the gradient projection algorithm is then proposed and demonstrated with a numerical example.\",\"PeriodicalId\":365722,\"journal\":{\"name\":\"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2002.1041262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2002.1041262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文将链路容量约束和先进先出约束结合到动态用户均衡问题中。每个出发地对和时间区间对应的动态平衡条件表明出行者所经历的广义路线旅行时间相等且最小。提出了一种嵌入梯度投影算法的嵌套拉格朗日方法,并用数值算例进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic user equilibrium problem with link capacity and first-in-first-out constraints
The paper incorporates both the link capacity and first-in-first-out constraints into the dynamic user equilibrium problem. The corresponding dynamic equilibrium conditions for each origin-destination pair and time interval state that the generalized route travel times experienced by travelers are equal and minimal. A nested Lagrangian method embedding the gradient projection algorithm is then proposed and demonstrated with a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信