基于样本的皮肤镜图像中色素皮损的分割

Howard Zhou, James M. Rehg, Mei Chen
{"title":"基于样本的皮肤镜图像中色素皮损的分割","authors":"Howard Zhou, James M. Rehg, Mei Chen","doi":"10.1109/ISBI.2010.5490372","DOIUrl":null,"url":null,"abstract":"Automated segmentation of pigmented skin lesions (PSLs) from dermoscopy images is an important step for computer-aided diagnosis of skin cancer. The segmentation task involves classifying each image pixel as either lesion or skin. It is challenging because lesion and skin can often have similar appearance. We present a novel exemplar-based algorithm for lesion segmentation which leverages the context provided by a global color model to retrieve annotated examples which are most similar to a given query image. Pixel labels are generated through a probabilistic voting rule and smoothed using a dermoscopy-specific spatial prior. We compare our method to three competing techniques using a large dataset of dermoscopy images with hand-segmented ground truth,We show that our exemplar-based approach yields significantly better segmentations and is computationally efficient.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"312 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Exemplar-based segmentation of pigmented skin lesions from dermoscopy images\",\"authors\":\"Howard Zhou, James M. Rehg, Mei Chen\",\"doi\":\"10.1109/ISBI.2010.5490372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated segmentation of pigmented skin lesions (PSLs) from dermoscopy images is an important step for computer-aided diagnosis of skin cancer. The segmentation task involves classifying each image pixel as either lesion or skin. It is challenging because lesion and skin can often have similar appearance. We present a novel exemplar-based algorithm for lesion segmentation which leverages the context provided by a global color model to retrieve annotated examples which are most similar to a given query image. Pixel labels are generated through a probabilistic voting rule and smoothed using a dermoscopy-specific spatial prior. We compare our method to three competing techniques using a large dataset of dermoscopy images with hand-segmented ground truth,We show that our exemplar-based approach yields significantly better segmentations and is computationally efficient.\",\"PeriodicalId\":250523,\"journal\":{\"name\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"312 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2010.5490372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

从皮肤镜图像中自动分割色素皮肤病变(psl)是计算机辅助诊断皮肤癌的重要步骤。分割任务包括将每个图像像素分类为病变或皮肤。这是具有挑战性的,因为病变和皮肤通常具有相似的外观。我们提出了一种新的基于样本的病变分割算法,该算法利用全局颜色模型提供的上下文来检索与给定查询图像最相似的注释示例。像素标签通过概率投票规则生成,并使用特定于皮肤镜的空间先验进行平滑。我们将我们的方法与三种竞争技术进行了比较,这些技术使用了大量的皮肤镜图像数据集和手工分割的地面真相。我们表明,我们的基于样本的方法产生了更好的分割效果,并且计算效率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exemplar-based segmentation of pigmented skin lesions from dermoscopy images
Automated segmentation of pigmented skin lesions (PSLs) from dermoscopy images is an important step for computer-aided diagnosis of skin cancer. The segmentation task involves classifying each image pixel as either lesion or skin. It is challenging because lesion and skin can often have similar appearance. We present a novel exemplar-based algorithm for lesion segmentation which leverages the context provided by a global color model to retrieve annotated examples which are most similar to a given query image. Pixel labels are generated through a probabilistic voting rule and smoothed using a dermoscopy-specific spatial prior. We compare our method to three competing techniques using a large dataset of dermoscopy images with hand-segmented ground truth,We show that our exemplar-based approach yields significantly better segmentations and is computationally efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信