基于酉权矩阵的方形ldstbc码率与ml解码复杂度的权衡

Sanjay Karmakar, M. Varanasi
{"title":"基于酉权矩阵的方形ldstbc码率与ml解码复杂度的权衡","authors":"Sanjay Karmakar, M. Varanasi","doi":"10.1109/GLOCOM.2008.ECP.237","DOIUrl":null,"url":null,"abstract":"The low decoding complexity structure of Linear Dispersion Space Time Block Codes (LDSTBCs) with unitary weight matrices is analyzed. It is shown that given n = 2alpha, the maximum number of groups in which the information symbols can be separated and decoded independently is (2a + 2), and as we lower the number of different groups to (2k + 2), 0 les k les alpha, we get higher rate codes. We also find the analytic expression for rates that such codes can achieve for any chosen group number, thus completely characterizing the rate-ML-decoding-complexity tradeoff for this class of codes. The proof of the result also includes a method for constructing such optimal rate achieving codes. Interestingly, this analysis produces some low decoding complexity codes with rate greater than one.","PeriodicalId":297815,"journal":{"name":"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Rate Versus ML-Decoding Complexity Tradeoff of Square LDSTBCs with Unitary Weight Matrices\",\"authors\":\"Sanjay Karmakar, M. Varanasi\",\"doi\":\"10.1109/GLOCOM.2008.ECP.237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low decoding complexity structure of Linear Dispersion Space Time Block Codes (LDSTBCs) with unitary weight matrices is analyzed. It is shown that given n = 2alpha, the maximum number of groups in which the information symbols can be separated and decoded independently is (2a + 2), and as we lower the number of different groups to (2k + 2), 0 les k les alpha, we get higher rate codes. We also find the analytic expression for rates that such codes can achieve for any chosen group number, thus completely characterizing the rate-ML-decoding-complexity tradeoff for this class of codes. The proof of the result also includes a method for constructing such optimal rate achieving codes. Interestingly, this analysis produces some low decoding complexity codes with rate greater than one.\",\"PeriodicalId\":297815,\"journal\":{\"name\":\"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOCOM.2008.ECP.237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.2008.ECP.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分析了具有酉权矩阵的线性色散空时分组码(ldstbc)低解码复杂度结构。结果表明,在给定n = 2alpha的情况下,信息符号可被分离和独立解码的最大群数为(2a + 2),当我们将不同的群数降低到(2k + 2), 0 × k × alpha时,我们可以得到更高的码率。我们还找到了这种码对于任何选择的群数可以达到的速率的解析表达式,从而完全表征了这类码的速率- ml解码-复杂性权衡。结果的证明还包括构造这种最优速率实现码的方法。有趣的是,这种分析产生了一些解码复杂度较低且速率大于1的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Rate Versus ML-Decoding Complexity Tradeoff of Square LDSTBCs with Unitary Weight Matrices
The low decoding complexity structure of Linear Dispersion Space Time Block Codes (LDSTBCs) with unitary weight matrices is analyzed. It is shown that given n = 2alpha, the maximum number of groups in which the information symbols can be separated and decoded independently is (2a + 2), and as we lower the number of different groups to (2k + 2), 0 les k les alpha, we get higher rate codes. We also find the analytic expression for rates that such codes can achieve for any chosen group number, thus completely characterizing the rate-ML-decoding-complexity tradeoff for this class of codes. The proof of the result also includes a method for constructing such optimal rate achieving codes. Interestingly, this analysis produces some low decoding complexity codes with rate greater than one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信