面向增量、大规模人脸识别

Junjie Yan, Zhen Lei, Dong Yi, S. Li
{"title":"面向增量、大规模人脸识别","authors":"Junjie Yan, Zhen Lei, Dong Yi, S. Li","doi":"10.1109/IJCB.2011.6117583","DOIUrl":null,"url":null,"abstract":"Linear discriminant analysis with nearest neighborhood classifier (LDA + NN) has been commonly used in face recognition, but it often confronts with two problems in real applications: (1) it cannot incrementally deal with the information of training instances; (2) it cannot achieve fast search against large scale gallery set. In this paper, we use incremental LDA (ILDA) and hashing based search method to deal with these two problems. Firstly two incremental LDA algorithms are proposed under spectral regression framework, namely exact incremental spectral regression discriminant analysis (EI-SRDA) and approximate incremental spectral regression discriminant analysis (AI-SRDA). Secondly we propose a similarity hashing algorithm of sub-linear complexity to achieve quick recognition from large gallery set. Experiments on FRGC and self-collected 100,000 faces database show the effective of our methods.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Towards incremental and large scale face recognition\",\"authors\":\"Junjie Yan, Zhen Lei, Dong Yi, S. Li\",\"doi\":\"10.1109/IJCB.2011.6117583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear discriminant analysis with nearest neighborhood classifier (LDA + NN) has been commonly used in face recognition, but it often confronts with two problems in real applications: (1) it cannot incrementally deal with the information of training instances; (2) it cannot achieve fast search against large scale gallery set. In this paper, we use incremental LDA (ILDA) and hashing based search method to deal with these two problems. Firstly two incremental LDA algorithms are proposed under spectral regression framework, namely exact incremental spectral regression discriminant analysis (EI-SRDA) and approximate incremental spectral regression discriminant analysis (AI-SRDA). Secondly we propose a similarity hashing algorithm of sub-linear complexity to achieve quick recognition from large gallery set. Experiments on FRGC and self-collected 100,000 faces database show the effective of our methods.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

线性判别分析与最近邻分类器(LDA + NN)是人脸识别中常用的方法,但在实际应用中经常面临两个问题:(1)不能对训练实例的信息进行增量处理;(2)无法实现对大型图库集的快速搜索。本文采用增量LDA (ILDA)和基于哈希的搜索方法来解决这两个问题。首先在光谱回归框架下提出了精确增量光谱回归判别分析(EI-SRDA)和近似增量光谱回归判别分析(AI-SRDA)两种增量LDA算法。其次,提出了一种次线性复杂度的相似性哈希算法,实现了对大型图库集的快速识别。在FRGC和自采集的10万张人脸数据库上进行的实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards incremental and large scale face recognition
Linear discriminant analysis with nearest neighborhood classifier (LDA + NN) has been commonly used in face recognition, but it often confronts with two problems in real applications: (1) it cannot incrementally deal with the information of training instances; (2) it cannot achieve fast search against large scale gallery set. In this paper, we use incremental LDA (ILDA) and hashing based search method to deal with these two problems. Firstly two incremental LDA algorithms are proposed under spectral regression framework, namely exact incremental spectral regression discriminant analysis (EI-SRDA) and approximate incremental spectral regression discriminant analysis (AI-SRDA). Secondly we propose a similarity hashing algorithm of sub-linear complexity to achieve quick recognition from large gallery set. Experiments on FRGC and self-collected 100,000 faces database show the effective of our methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信