基于标准CMOS工艺的大电流大带宽光敏器

A. Dupret, E. Belhaire, J. Rodier
{"title":"基于标准CMOS工艺的大电流大带宽光敏器","authors":"A. Dupret, E. Belhaire, J. Rodier","doi":"10.1117/12.262540","DOIUrl":null,"url":null,"abstract":"On standard CMOS processes, basically two photosensors may be designed: photodiodes or vertical bipolar phototransistors. A trade-off must be found between the area of the sensor, its sensitivity and its bandwidth. In most designs, the high sensitivity of the sensor is a key point and led to choosing a phototransistor based solution. However this choice is made at the expense of the bandwidth of the sensor. For small currents, an analysis shows that it is mainly proportional to the base-emitter capacitance Cbe and to the collector current. Hence, in the case of a floating base bipolar and for a given current, the only way of reducing Cbe is to decrease the emitter area. On the other hand, the sensitivity is to be preserved. We have proposed and tested an original sensor based on the splitting of phototransistors. The basic idea is to use minimum size emitter bipolar transistors and to increase their collector-base junction perimeter. Thanks to this design, for a given sensor area, the bandwidth has been improved by a factor of 3 and the sensitivity has been preserved. This solution has been successfully used on an operational retina performing stochastic computations at video rates. In particular, thanks to our design, we have been able to successfully implement a 150 by 50 micrometer2 optoelectronic random generator providing up to 100,000 random variables per second.","PeriodicalId":127521,"journal":{"name":"Advanced Imaging and Network Technologies","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"High-current large-bandwidth photosensor on standard CMOS processes\",\"authors\":\"A. Dupret, E. Belhaire, J. Rodier\",\"doi\":\"10.1117/12.262540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On standard CMOS processes, basically two photosensors may be designed: photodiodes or vertical bipolar phototransistors. A trade-off must be found between the area of the sensor, its sensitivity and its bandwidth. In most designs, the high sensitivity of the sensor is a key point and led to choosing a phototransistor based solution. However this choice is made at the expense of the bandwidth of the sensor. For small currents, an analysis shows that it is mainly proportional to the base-emitter capacitance Cbe and to the collector current. Hence, in the case of a floating base bipolar and for a given current, the only way of reducing Cbe is to decrease the emitter area. On the other hand, the sensitivity is to be preserved. We have proposed and tested an original sensor based on the splitting of phototransistors. The basic idea is to use minimum size emitter bipolar transistors and to increase their collector-base junction perimeter. Thanks to this design, for a given sensor area, the bandwidth has been improved by a factor of 3 and the sensitivity has been preserved. This solution has been successfully used on an operational retina performing stochastic computations at video rates. In particular, thanks to our design, we have been able to successfully implement a 150 by 50 micrometer2 optoelectronic random generator providing up to 100,000 random variables per second.\",\"PeriodicalId\":127521,\"journal\":{\"name\":\"Advanced Imaging and Network Technologies\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Imaging and Network Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.262540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Imaging and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.262540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在标准的CMOS工艺上,基本上可以设计两个光电传感器:光电二极管或垂直双极光电晶体管。必须在传感器的面积、灵敏度和带宽之间找到一种权衡。在大多数设计中,传感器的高灵敏度是一个关键点,并导致选择基于光电晶体管的解决方案。然而,这种选择是以传感器的带宽为代价的。对于小电流,分析表明它主要与基极-发射极电容Cbe和集电极电流成正比。因此,在浮动基极双极的情况下,对于给定的电流,减小Cbe的唯一方法是减小发射极面积。另一方面,要保留敏感性。我们提出并测试了一种基于光电晶体管分裂的原始传感器。基本思想是使用最小尺寸的发射极双极晶体管,并增加其集电极基极结周长。由于这种设计,对于给定的传感器区域,带宽提高了3倍,并且保留了灵敏度。该解决方案已成功应用于视频率随机计算的操作视网膜。特别是,由于我们的设计,我们已经能够成功地实现一个150 × 50微米的光电随机发生器,每秒提供多达10万个随机变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-current large-bandwidth photosensor on standard CMOS processes
On standard CMOS processes, basically two photosensors may be designed: photodiodes or vertical bipolar phototransistors. A trade-off must be found between the area of the sensor, its sensitivity and its bandwidth. In most designs, the high sensitivity of the sensor is a key point and led to choosing a phototransistor based solution. However this choice is made at the expense of the bandwidth of the sensor. For small currents, an analysis shows that it is mainly proportional to the base-emitter capacitance Cbe and to the collector current. Hence, in the case of a floating base bipolar and for a given current, the only way of reducing Cbe is to decrease the emitter area. On the other hand, the sensitivity is to be preserved. We have proposed and tested an original sensor based on the splitting of phototransistors. The basic idea is to use minimum size emitter bipolar transistors and to increase their collector-base junction perimeter. Thanks to this design, for a given sensor area, the bandwidth has been improved by a factor of 3 and the sensitivity has been preserved. This solution has been successfully used on an operational retina performing stochastic computations at video rates. In particular, thanks to our design, we have been able to successfully implement a 150 by 50 micrometer2 optoelectronic random generator providing up to 100,000 random variables per second.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信