一类反馈控制系统混沌行为的概率表征

K. Loparo, X. Feng
{"title":"一类反馈控制系统混沌行为的概率表征","authors":"K. Loparo, X. Feng","doi":"10.1109/CDC.1990.203819","DOIUrl":null,"url":null,"abstract":"The authors investigate a family of two-dimensional nonlinear feedback systems which do not satisfy the Lipschitz continuity condition and exhibit chaotic behavior. The geometric Poincare map. is determined analytically and a bifurcation study in terms of two canonical parameters and the associated asymptotic behavior of the systems are presented. Ergodic theory of one-dimensional dynamic systems is used to derive a probabilistic description of the chaotic motions inside the chaotic attractor. It is shown that the chaotic motion is isometric to an experiment of randomly tossing an uneven die.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic characterization of chaotic behavior in a family of feedback control systems\",\"authors\":\"K. Loparo, X. Feng\",\"doi\":\"10.1109/CDC.1990.203819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors investigate a family of two-dimensional nonlinear feedback systems which do not satisfy the Lipschitz continuity condition and exhibit chaotic behavior. The geometric Poincare map. is determined analytically and a bifurcation study in terms of two canonical parameters and the associated asymptotic behavior of the systems are presented. Ergodic theory of one-dimensional dynamic systems is used to derive a probabilistic description of the chaotic motions inside the chaotic attractor. It is shown that the chaotic motion is isometric to an experiment of randomly tossing an uneven die.<<ETX>>\",\"PeriodicalId\":287089,\"journal\":{\"name\":\"29th IEEE Conference on Decision and Control\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"29th IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1990.203819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类不满足Lipschitz连续条件且具有混沌行为的二维非线性反馈系统。几何庞加莱图。给出了系统的两个典型参数的分岔研究和相关的渐近行为。利用一维动力系统的遍历理论推导了混沌吸引子内部混沌运动的概率描述。结果表明混沌运动与随机掷非均匀骰子的实验是等距的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic characterization of chaotic behavior in a family of feedback control systems
The authors investigate a family of two-dimensional nonlinear feedback systems which do not satisfy the Lipschitz continuity condition and exhibit chaotic behavior. The geometric Poincare map. is determined analytically and a bifurcation study in terms of two canonical parameters and the associated asymptotic behavior of the systems are presented. Ergodic theory of one-dimensional dynamic systems is used to derive a probabilistic description of the chaotic motions inside the chaotic attractor. It is shown that the chaotic motion is isometric to an experiment of randomly tossing an uneven die.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信