掷硬币控制:有限视界随机最优控制的混合策略

M. Ono
{"title":"掷硬币控制:有限视界随机最优控制的混合策略","authors":"M. Ono","doi":"10.1109/ACC.2016.7526513","DOIUrl":null,"url":null,"abstract":"It may sound counterintuitive that choosing control inputs randomly lowers cost in an optimal control problem. It can be the case in a nonconvex chance-constrained optimal control problem, including stochastic model predictive control (SMPC). This is because allowing mixed strategy convexifies a nonconvex problem; the expected cost and the probability of constraint violation of a mixed strategy control is a convex combination of pure strategy controls. Therefore the improvement in cost that mixed strategy control provides over pure strategy is equal to the duality gap. This paper presents an efficient method to compute an optimal mixed strategy solution through dual optimization. The focus of this paper is given to the solution method to finite-horizon, constrained stochastic optimal control problems, which are solved at each iteration of SMPC. We demonstrate the method on a chance-constrained trajectory planning problem with obstacles.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Control by coin flips: Mixed strategy for finite-horizon stochastic optimal control\",\"authors\":\"M. Ono\",\"doi\":\"10.1109/ACC.2016.7526513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It may sound counterintuitive that choosing control inputs randomly lowers cost in an optimal control problem. It can be the case in a nonconvex chance-constrained optimal control problem, including stochastic model predictive control (SMPC). This is because allowing mixed strategy convexifies a nonconvex problem; the expected cost and the probability of constraint violation of a mixed strategy control is a convex combination of pure strategy controls. Therefore the improvement in cost that mixed strategy control provides over pure strategy is equal to the duality gap. This paper presents an efficient method to compute an optimal mixed strategy solution through dual optimization. The focus of this paper is given to the solution method to finite-horizon, constrained stochastic optimal control problems, which are solved at each iteration of SMPC. We demonstrate the method on a chance-constrained trajectory planning problem with obstacles.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7526513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7526513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在最优控制问题中,随机选择控制输入会降低成本,这听起来可能违反直觉。在非凸机会约束的最优控制问题中,包括随机模型预测控制(SMPC),都可能出现这种情况。这是因为允许混合策略使一个非凸问题凸出;混合策略控制的期望成本和违反约束的概率是纯策略控制的凸组合。因此,混合策略控制比纯策略控制在成本上的改进等于对偶差距。本文提出了一种通过对偶优化计算混合策略最优解的有效方法。本文重点研究了有限视界约束随机最优控制问题的求解方法,该问题在SMPC的每次迭代中求解。我们在一个有障碍物的机会约束的轨迹规划问题上演示了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control by coin flips: Mixed strategy for finite-horizon stochastic optimal control
It may sound counterintuitive that choosing control inputs randomly lowers cost in an optimal control problem. It can be the case in a nonconvex chance-constrained optimal control problem, including stochastic model predictive control (SMPC). This is because allowing mixed strategy convexifies a nonconvex problem; the expected cost and the probability of constraint violation of a mixed strategy control is a convex combination of pure strategy controls. Therefore the improvement in cost that mixed strategy control provides over pure strategy is equal to the duality gap. This paper presents an efficient method to compute an optimal mixed strategy solution through dual optimization. The focus of this paper is given to the solution method to finite-horizon, constrained stochastic optimal control problems, which are solved at each iteration of SMPC. We demonstrate the method on a chance-constrained trajectory planning problem with obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信