结合分类器的头颅影像学图像地标检测

M. Farshbaf, A. Pouyan
{"title":"结合分类器的头颅影像学图像地标检测","authors":"M. Farshbaf, A. Pouyan","doi":"10.1109/ICBME.2010.5704950","DOIUrl":null,"url":null,"abstract":"This paper, presents a new cephalometric landmark localization method based on combining two classifier results. Initially, a classifier based on histograms of oriented gradients makes a first estimation of the potential windows, and then a second classifier, based on histograms of gray profile, classifies the detected windows. By combining the results of these two classifiers, final decision is made about the landmark window location. HOG features gather edge profiles in the image and making decision for the most proper window in some detection windows needs more information than just edge profiles. By adding the gray profile features to the system and combining the results in a proper manner, detection performance increases significantly for a range of hard to easy landmarks.","PeriodicalId":377764,"journal":{"name":"2010 17th Iranian Conference of Biomedical Engineering (ICBME)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Landmark detection on cephalometric radiology images through combining classifiers\",\"authors\":\"M. Farshbaf, A. Pouyan\",\"doi\":\"10.1109/ICBME.2010.5704950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper, presents a new cephalometric landmark localization method based on combining two classifier results. Initially, a classifier based on histograms of oriented gradients makes a first estimation of the potential windows, and then a second classifier, based on histograms of gray profile, classifies the detected windows. By combining the results of these two classifiers, final decision is made about the landmark window location. HOG features gather edge profiles in the image and making decision for the most proper window in some detection windows needs more information than just edge profiles. By adding the gray profile features to the system and combining the results in a proper manner, detection performance increases significantly for a range of hard to easy landmarks.\",\"PeriodicalId\":377764,\"journal\":{\"name\":\"2010 17th Iranian Conference of Biomedical Engineering (ICBME)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 17th Iranian Conference of Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2010.5704950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 17th Iranian Conference of Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2010.5704950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种结合两种分类器结果的头颅特征点定位新方法。首先,基于方向梯度直方图的分类器首先对潜在窗口进行估计,然后基于灰度轮廓直方图的第二个分类器对检测到的窗口进行分类。结合这两个分类器的结果,最终确定地标窗口的位置。HOG特征收集图像中的边缘轮廓,在某些检测窗口中选择最合适的窗口需要更多的信息,而不仅仅是边缘轮廓。通过将灰度轮廓特征添加到系统中并以适当的方式组合结果,检测性能显着提高了一系列难易地标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Landmark detection on cephalometric radiology images through combining classifiers
This paper, presents a new cephalometric landmark localization method based on combining two classifier results. Initially, a classifier based on histograms of oriented gradients makes a first estimation of the potential windows, and then a second classifier, based on histograms of gray profile, classifies the detected windows. By combining the results of these two classifiers, final decision is made about the landmark window location. HOG features gather edge profiles in the image and making decision for the most proper window in some detection windows needs more information than just edge profiles. By adding the gray profile features to the system and combining the results in a proper manner, detection performance increases significantly for a range of hard to easy landmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信