{"title":"低温工业加热过程太阳能热系统的优化","authors":"Chaimaa El Mkadmi, A. Wahed","doi":"10.1109/IRSEC.2016.7983977","DOIUrl":null,"url":null,"abstract":"Global industrial energy consumption amounts to 3616.93 TWh of oil and oil products, 6059 TWh of gas and 8245.60TWh of electricity [1]. About two-third of this industrial energy is considered to utilize for industrial heating processes, also known as ‘industrial process heat’. With a goal to energy security and environmental sustainability, solar thermal system can be considered as an alternative solution for industrial heating applications. Solar thermal systems integrated with the industrial process heat for low temperature (60 – 120 °C) has a greater potential because of wider range of industrial applications. This paper studies a solar thermal system providing industrial heat required for a dairy industry. A TRNSYS simulation model has been developed to study the solar thermal systems performance for three different climatic conditions-Cyprus, France (Lyon) and Morocco (Casablanca). An optimum collector model has been analysed with evacuated tube collector technology and found out that solar thermal system meets-89%,76 % and 94% of the total heating load demand of the industry for three different regions-Cyprus, France and Morocco respectively.","PeriodicalId":180557,"journal":{"name":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Optimization of a solar thermal system for low temperature industrial heating process\",\"authors\":\"Chaimaa El Mkadmi, A. Wahed\",\"doi\":\"10.1109/IRSEC.2016.7983977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Global industrial energy consumption amounts to 3616.93 TWh of oil and oil products, 6059 TWh of gas and 8245.60TWh of electricity [1]. About two-third of this industrial energy is considered to utilize for industrial heating processes, also known as ‘industrial process heat’. With a goal to energy security and environmental sustainability, solar thermal system can be considered as an alternative solution for industrial heating applications. Solar thermal systems integrated with the industrial process heat for low temperature (60 – 120 °C) has a greater potential because of wider range of industrial applications. This paper studies a solar thermal system providing industrial heat required for a dairy industry. A TRNSYS simulation model has been developed to study the solar thermal systems performance for three different climatic conditions-Cyprus, France (Lyon) and Morocco (Casablanca). An optimum collector model has been analysed with evacuated tube collector technology and found out that solar thermal system meets-89%,76 % and 94% of the total heating load demand of the industry for three different regions-Cyprus, France and Morocco respectively.\",\"PeriodicalId\":180557,\"journal\":{\"name\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Renewable and Sustainable Energy Conference (IRSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRSEC.2016.7983977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2016.7983977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of a solar thermal system for low temperature industrial heating process
Global industrial energy consumption amounts to 3616.93 TWh of oil and oil products, 6059 TWh of gas and 8245.60TWh of electricity [1]. About two-third of this industrial energy is considered to utilize for industrial heating processes, also known as ‘industrial process heat’. With a goal to energy security and environmental sustainability, solar thermal system can be considered as an alternative solution for industrial heating applications. Solar thermal systems integrated with the industrial process heat for low temperature (60 – 120 °C) has a greater potential because of wider range of industrial applications. This paper studies a solar thermal system providing industrial heat required for a dairy industry. A TRNSYS simulation model has been developed to study the solar thermal systems performance for three different climatic conditions-Cyprus, France (Lyon) and Morocco (Casablanca). An optimum collector model has been analysed with evacuated tube collector technology and found out that solar thermal system meets-89%,76 % and 94% of the total heating load demand of the industry for three different regions-Cyprus, France and Morocco respectively.