一种新的基于残差平方的密度峰聚类算法

M. Parmar, D. Wang, A. Tan, C. Miao, Jianhua Jiang, You Zhou
{"title":"一种新的基于残差平方的密度峰聚类算法","authors":"M. Parmar, D. Wang, A. Tan, C. Miao, Jianhua Jiang, You Zhou","doi":"10.1109/SPAC.2017.8304248","DOIUrl":null,"url":null,"abstract":"The density peak clustering (DPC) algorithm is designed to quickly identify intricate-shaped clusters with high dimensionality by finding high-density peaks in a non-iterative manner and using only one threshold parameter. However, DPC has certain limitations in processing low-density data points because it only takes the global data density distribution into account. As such, DPC may confine in forming low-density data clusters, or in other words, DPC may fail in detecting anomalies and borderline points. In this paper, we analyze the limitations of DPC and propose a novel density peak clustering algorithm to better handle low-density clustering tasks. Specifically, our algorithm provides a better decision graph comparing to DPC for the determination of cluster centroids. Experimental results show that our algorithm outperforms DPC and other clustering algorithms on the benchmarking datasets.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A novel density peak clustering algorithm based on squared residual error\",\"authors\":\"M. Parmar, D. Wang, A. Tan, C. Miao, Jianhua Jiang, You Zhou\",\"doi\":\"10.1109/SPAC.2017.8304248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The density peak clustering (DPC) algorithm is designed to quickly identify intricate-shaped clusters with high dimensionality by finding high-density peaks in a non-iterative manner and using only one threshold parameter. However, DPC has certain limitations in processing low-density data points because it only takes the global data density distribution into account. As such, DPC may confine in forming low-density data clusters, or in other words, DPC may fail in detecting anomalies and borderline points. In this paper, we analyze the limitations of DPC and propose a novel density peak clustering algorithm to better handle low-density clustering tasks. Specifically, our algorithm provides a better decision graph comparing to DPC for the determination of cluster centroids. Experimental results show that our algorithm outperforms DPC and other clustering algorithms on the benchmarking datasets.\",\"PeriodicalId\":161647,\"journal\":{\"name\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2017.8304248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

密度峰聚类(DPC)算法采用非迭代的方法,仅使用一个阈值参数,快速识别高维复杂形状的聚类。但是,DPC只考虑全局数据密度分布,在处理低密度数据点时存在一定的局限性。因此,DPC可能局限于形成低密度的数据簇,也就是说,DPC可能无法检测到异常和边界点。本文分析了DPC算法的局限性,提出了一种新的密度峰值聚类算法,以更好地处理低密度聚类任务。具体来说,与DPC相比,我们的算法提供了更好的决策图来确定聚类质心。实验结果表明,该算法在基准数据集上优于DPC和其他聚类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel density peak clustering algorithm based on squared residual error
The density peak clustering (DPC) algorithm is designed to quickly identify intricate-shaped clusters with high dimensionality by finding high-density peaks in a non-iterative manner and using only one threshold parameter. However, DPC has certain limitations in processing low-density data points because it only takes the global data density distribution into account. As such, DPC may confine in forming low-density data clusters, or in other words, DPC may fail in detecting anomalies and borderline points. In this paper, we analyze the limitations of DPC and propose a novel density peak clustering algorithm to better handle low-density clustering tasks. Specifically, our algorithm provides a better decision graph comparing to DPC for the determination of cluster centroids. Experimental results show that our algorithm outperforms DPC and other clustering algorithms on the benchmarking datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信