使用奇异值分解表征异构计算环境

Abdulla Al-Qawasmeh, A. A. Maciejewski, H. Siegel
{"title":"使用奇异值分解表征异构计算环境","authors":"Abdulla Al-Qawasmeh, A. A. Maciejewski, H. Siegel","doi":"10.1109/IPDPSW.2010.5470875","DOIUrl":null,"url":null,"abstract":"We consider a heterogeneous computing environment that consists of a collection of machines and task types. The machines vary in capabilities and different task types are better suited to specific machine architectures. We describe some of the difficulties with the current measures that are used to characterize heterogeneous computing environments and propose two new measures. These measures relate to the aggregate machine performance (relative to the given task types) and the degree of affinity that specific task types have to different machines. The latter measure of task-machine affinity is quantified using singular value decomposition. One motivation for using these new measures is to be able to represent a wider range of heterogeneous environments than is possible with previous techniques. An important application of studying the heterogeneity of heterogeneous systems is predicting the performance of different computing hardware for a given task type mix.","PeriodicalId":329280,"journal":{"name":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Characterizing heterogeneous computing environments using singular value decomposition\",\"authors\":\"Abdulla Al-Qawasmeh, A. A. Maciejewski, H. Siegel\",\"doi\":\"10.1109/IPDPSW.2010.5470875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a heterogeneous computing environment that consists of a collection of machines and task types. The machines vary in capabilities and different task types are better suited to specific machine architectures. We describe some of the difficulties with the current measures that are used to characterize heterogeneous computing environments and propose two new measures. These measures relate to the aggregate machine performance (relative to the given task types) and the degree of affinity that specific task types have to different machines. The latter measure of task-machine affinity is quantified using singular value decomposition. One motivation for using these new measures is to be able to represent a wider range of heterogeneous environments than is possible with previous techniques. An important application of studying the heterogeneity of heterogeneous systems is predicting the performance of different computing hardware for a given task type mix.\",\"PeriodicalId\":329280,\"journal\":{\"name\":\"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2010.5470875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2010.5470875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们考虑一个由机器和任务类型集合组成的异构计算环境。机器的功能各不相同,不同的任务类型更适合特定的机器架构。我们描述了当前用于描述异构计算环境的度量的一些困难,并提出了两个新的度量。这些度量与总体机器性能(相对于给定的任务类型)以及特定任务类型与不同机器的亲和程度有关。后一种测量任务-机器亲和度的方法使用奇异值分解进行量化。使用这些新度量的一个动机是能够表示比以前的技术更广泛的异构环境。研究异构系统异构性的一个重要应用是预测给定任务类型混合下不同计算硬件的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing heterogeneous computing environments using singular value decomposition
We consider a heterogeneous computing environment that consists of a collection of machines and task types. The machines vary in capabilities and different task types are better suited to specific machine architectures. We describe some of the difficulties with the current measures that are used to characterize heterogeneous computing environments and propose two new measures. These measures relate to the aggregate machine performance (relative to the given task types) and the degree of affinity that specific task types have to different machines. The latter measure of task-machine affinity is quantified using singular value decomposition. One motivation for using these new measures is to be able to represent a wider range of heterogeneous environments than is possible with previous techniques. An important application of studying the heterogeneity of heterogeneous systems is predicting the performance of different computing hardware for a given task type mix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信