微电网机组调度的混合智能技术

B. Dey, B. Bhattacharyya
{"title":"微电网机组调度的混合智能技术","authors":"B. Dey, B. Bhattacharyya","doi":"10.1109/ISAP48318.2019.9065950","DOIUrl":null,"url":null,"abstract":"Optimal scheduling of the distributed generation (DG) sources for a microgrid is very essential for the economical and a balanced load sharing operation of the same. Various classical and evolutionary optimization techniques are being used to solve this scheduling problem. This paper deals in performing energy management of a rural microgrid test system using hybrids of Grey wolf optimizer (GWO). GWO is first modified (MGWO) as mentioned in literature. Further MGWO is amalgamated with sine cosine algorithm (SCA), particle swarm optimization (PSO) and crow search algorithm (CSA) to perform the optimization. All of numerical results, pictorial and statistical data point towards the superiority of the proposed MGWOPSO among the four other optimizers used.","PeriodicalId":316020,"journal":{"name":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Hybrid Intelligence Techniques for Unit Commitment of Microgrids\",\"authors\":\"B. Dey, B. Bhattacharyya\",\"doi\":\"10.1109/ISAP48318.2019.9065950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimal scheduling of the distributed generation (DG) sources for a microgrid is very essential for the economical and a balanced load sharing operation of the same. Various classical and evolutionary optimization techniques are being used to solve this scheduling problem. This paper deals in performing energy management of a rural microgrid test system using hybrids of Grey wolf optimizer (GWO). GWO is first modified (MGWO) as mentioned in literature. Further MGWO is amalgamated with sine cosine algorithm (SCA), particle swarm optimization (PSO) and crow search algorithm (CSA) to perform the optimization. All of numerical results, pictorial and statistical data point towards the superiority of the proposed MGWOPSO among the four other optimizers used.\",\"PeriodicalId\":316020,\"journal\":{\"name\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISAP48318.2019.9065950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP48318.2019.9065950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

微电网分布式发电源的优化调度对微电网的经济、均衡负荷共享运行至关重要。各种经典的和进化的优化技术被用来解决这个调度问题。本文研究了利用混合灰狼优化器(GWO)对农村微电网测试系统进行能量管理。GWO是文献中提到的第一次修改(MGWO)。在此基础上,结合正弦余弦算法(SCA)、粒子群算法(PSO)和乌鸦搜索算法(CSA)进行优化。所有的数值结果、图像和统计数据都表明了所提出的MGWOPSO在使用的其他四种优化器中具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Intelligence Techniques for Unit Commitment of Microgrids
Optimal scheduling of the distributed generation (DG) sources for a microgrid is very essential for the economical and a balanced load sharing operation of the same. Various classical and evolutionary optimization techniques are being used to solve this scheduling problem. This paper deals in performing energy management of a rural microgrid test system using hybrids of Grey wolf optimizer (GWO). GWO is first modified (MGWO) as mentioned in literature. Further MGWO is amalgamated with sine cosine algorithm (SCA), particle swarm optimization (PSO) and crow search algorithm (CSA) to perform the optimization. All of numerical results, pictorial and statistical data point towards the superiority of the proposed MGWOPSO among the four other optimizers used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信