基于显著性加权稀疏编码外观模型的视觉跟踪

Wanyi Li, Peng Wang, Hong Qiao
{"title":"基于显著性加权稀疏编码外观模型的视觉跟踪","authors":"Wanyi Li, Peng Wang, Hong Qiao","doi":"10.1109/ICPR.2014.701","DOIUrl":null,"url":null,"abstract":"Sparse coding has been used for target appearance modeling and applied successfully in visual tracking. However, noise may be inevitably introduced into the representation due to background clutter. To cope with this problem, we propose a saliency weighted sparse coding appearance model for visual tracking. Firstly, a spectral filtering based visual attention computational model, which combines both bottom-up and top-down visual attention, is proposed to calculate saliency map. Secondly, pooling operation in sparse coding is weighted by calculated saliency map to help target representation focus on distinctive features and suppress background clutter. Extensive experiments on a recently proposed tracking benchmark demonstrate that the proposed algorithm outperforms state-of-the-art methods in tracking objects under background clutter.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Visual Tracking via Saliency Weighted Sparse Coding Appearance Model\",\"authors\":\"Wanyi Li, Peng Wang, Hong Qiao\",\"doi\":\"10.1109/ICPR.2014.701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse coding has been used for target appearance modeling and applied successfully in visual tracking. However, noise may be inevitably introduced into the representation due to background clutter. To cope with this problem, we propose a saliency weighted sparse coding appearance model for visual tracking. Firstly, a spectral filtering based visual attention computational model, which combines both bottom-up and top-down visual attention, is proposed to calculate saliency map. Secondly, pooling operation in sparse coding is weighted by calculated saliency map to help target representation focus on distinctive features and suppress background clutter. Extensive experiments on a recently proposed tracking benchmark demonstrate that the proposed algorithm outperforms state-of-the-art methods in tracking objects under background clutter.\",\"PeriodicalId\":142159,\"journal\":{\"name\":\"2014 22nd International Conference on Pattern Recognition\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2014.701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

稀疏编码已被用于目标外观建模,并成功应用于视觉跟踪。然而,由于背景杂波的存在,噪声不可避免地会被引入到图像中。为了解决这个问题,我们提出了一种显著性加权稀疏编码的视觉跟踪外观模型。首先,提出了一种结合自底向上和自顶向下视觉注意的基于光谱滤波的视觉注意计算模型,计算显著性图;其次,稀疏编码中的池化操作通过计算出的显著性映射进行加权,帮助目标表示集中在显著特征上,抑制背景杂波;在最近提出的跟踪基准上进行的大量实验表明,所提出的算法在背景杂波下跟踪目标的性能优于当前最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Tracking via Saliency Weighted Sparse Coding Appearance Model
Sparse coding has been used for target appearance modeling and applied successfully in visual tracking. However, noise may be inevitably introduced into the representation due to background clutter. To cope with this problem, we propose a saliency weighted sparse coding appearance model for visual tracking. Firstly, a spectral filtering based visual attention computational model, which combines both bottom-up and top-down visual attention, is proposed to calculate saliency map. Secondly, pooling operation in sparse coding is weighted by calculated saliency map to help target representation focus on distinctive features and suppress background clutter. Extensive experiments on a recently proposed tracking benchmark demonstrate that the proposed algorithm outperforms state-of-the-art methods in tracking objects under background clutter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信