越南语文本依赖的说话人识别

Diep Dao Thi Thu, Van Loan Trinh, H. Nguyen, Hung Pham Ngoc
{"title":"越南语文本依赖的说话人识别","authors":"Diep Dao Thi Thu, Van Loan Trinh, H. Nguyen, Hung Pham Ngoc","doi":"10.1109/SOCPAR.2013.7054126","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for Vietnamese text-dependent speaker recognition. The system is modeled for each speaker using mixture model Gaussian GMM (Gaussian Mixture Model). The phonemes in the keywords are represented by hidden Markov models HMM. The prior and posterior probabilities for keywords and speakers have been combined together to identify speakers. The results showed that in the case the speaker did not say a long enough phrase, this approach has increased performance of speaker identification.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Text-dependent speaker recognition for vietnamese\",\"authors\":\"Diep Dao Thi Thu, Van Loan Trinh, H. Nguyen, Hung Pham Ngoc\",\"doi\":\"10.1109/SOCPAR.2013.7054126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new method for Vietnamese text-dependent speaker recognition. The system is modeled for each speaker using mixture model Gaussian GMM (Gaussian Mixture Model). The phonemes in the keywords are represented by hidden Markov models HMM. The prior and posterior probabilities for keywords and speakers have been combined together to identify speakers. The results showed that in the case the speaker did not say a long enough phrase, this approach has increased performance of speaker identification.\",\"PeriodicalId\":315126,\"journal\":{\"name\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2013.7054126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于文本的越南语说话人识别新方法。系统采用高斯混合模型(Gaussian mixture model,高斯混合模型)对每个扬声器进行建模。关键词中的音素用隐马尔可夫模型HMM表示。将关键词和说话人的先验概率和后验概率结合在一起来识别说话人。结果表明,在说话人没有说出足够长的短语的情况下,该方法提高了说话人识别的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text-dependent speaker recognition for vietnamese
This paper presents a new method for Vietnamese text-dependent speaker recognition. The system is modeled for each speaker using mixture model Gaussian GMM (Gaussian Mixture Model). The phonemes in the keywords are represented by hidden Markov models HMM. The prior and posterior probabilities for keywords and speakers have been combined together to identify speakers. The results showed that in the case the speaker did not say a long enough phrase, this approach has increased performance of speaker identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信