利用显性和隐性用户反馈的协同特征组合推荐

M. Zanker, M. Jessenitschnig
{"title":"利用显性和隐性用户反馈的协同特征组合推荐","authors":"M. Zanker, M. Jessenitschnig","doi":"10.1109/CEC.2009.84","DOIUrl":null,"url":null,"abstract":"Collaborative filtering (CF) is currently the most popular technique used in commercial recommender systems. Algorithms of this type derive personalized product propositions for customers by exploitingstatistics derived from vast amounts of transaction data.Traditionally, basic CF algorithms have exploited a single category of ratings despite the fact that on many platforms a variety of different forms of user feedback are available for personalization and recommendation. In this paper we explore a collaborative feature-combination algorithm that concurrently exploits multiple aspects of the user model like clickstream data, sales transactions and explicit user requirements to overcome some known shortcomingsof CF like the cold-start problem for new users. We validate our contribution by evaluating it against the standard user-to-user CF algorithm using a dataset from a commercial Web shop. Evaluation results indicate considerable improvements in terms of user coverageand accuracy.","PeriodicalId":384060,"journal":{"name":"2009 IEEE Conference on Commerce and Enterprise Computing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Collaborative Feature-Combination Recommender Exploiting Explicit and Implicit User Feedback\",\"authors\":\"M. Zanker, M. Jessenitschnig\",\"doi\":\"10.1109/CEC.2009.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering (CF) is currently the most popular technique used in commercial recommender systems. Algorithms of this type derive personalized product propositions for customers by exploitingstatistics derived from vast amounts of transaction data.Traditionally, basic CF algorithms have exploited a single category of ratings despite the fact that on many platforms a variety of different forms of user feedback are available for personalization and recommendation. In this paper we explore a collaborative feature-combination algorithm that concurrently exploits multiple aspects of the user model like clickstream data, sales transactions and explicit user requirements to overcome some known shortcomingsof CF like the cold-start problem for new users. We validate our contribution by evaluating it against the standard user-to-user CF algorithm using a dataset from a commercial Web shop. Evaluation results indicate considerable improvements in terms of user coverageand accuracy.\",\"PeriodicalId\":384060,\"journal\":{\"name\":\"2009 IEEE Conference on Commerce and Enterprise Computing\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Conference on Commerce and Enterprise Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2009.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Conference on Commerce and Enterprise Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2009.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

协同过滤(CF)是目前商业推荐系统中最常用的技术。这种类型的算法通过利用从大量交易数据中获得的统计数据,为客户提供个性化的产品建议。传统上,基本的CF算法利用了单一类别的评分,尽管在许多平台上有各种不同形式的用户反馈可用于个性化和推荐。在本文中,我们探索了一种协同特征组合算法,该算法同时利用用户模型的多个方面,如点击流数据、销售交易和明确的用户需求,以克服CF的一些已知缺点,如新用户的冷启动问题。我们通过使用来自商业Web商店的数据集对标准的用户对用户CF算法进行评估来验证我们的贡献。评估结果表明,在用户覆盖率和准确性方面有相当大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Feature-Combination Recommender Exploiting Explicit and Implicit User Feedback
Collaborative filtering (CF) is currently the most popular technique used in commercial recommender systems. Algorithms of this type derive personalized product propositions for customers by exploitingstatistics derived from vast amounts of transaction data.Traditionally, basic CF algorithms have exploited a single category of ratings despite the fact that on many platforms a variety of different forms of user feedback are available for personalization and recommendation. In this paper we explore a collaborative feature-combination algorithm that concurrently exploits multiple aspects of the user model like clickstream data, sales transactions and explicit user requirements to overcome some known shortcomingsof CF like the cold-start problem for new users. We validate our contribution by evaluating it against the standard user-to-user CF algorithm using a dataset from a commercial Web shop. Evaluation results indicate considerable improvements in terms of user coverageand accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信