{"title":"设计对抗当前和未来代码注入攻击的对策的方法","authors":"Yves Younan, W. Joosen, F. Piessens","doi":"10.1109/IWIA.2005.2","DOIUrl":null,"url":null,"abstract":"This paper proposes a methodology to develop countermeasures against code injection attacks, and validates the methodology by working out a specific countermeasure. This methodology is based on modeling the execution environment of a program. Such a model is then used to build countermeasures. The paper justifies the need for a more structured approach to protect programs against code injection attacks: we examine advanced techniques for injecting code into C and C++ programs and we discuss state-of-the-art (often ad hoc) approaches that typically protect singular memory locations. We validate our methodology by building countermeasures that prevent attacks by protecting a broad variety of memory locations that may be used by attackers to perform code injections. The paper evaluates our approach and discusses ongoing and future work.","PeriodicalId":247477,"journal":{"name":"Third IEEE International Workshop on Information Assurance (IWIA'05)","volume":"7 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A methodology for designing countermeasures against current and future code injection attacks\",\"authors\":\"Yves Younan, W. Joosen, F. Piessens\",\"doi\":\"10.1109/IWIA.2005.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a methodology to develop countermeasures against code injection attacks, and validates the methodology by working out a specific countermeasure. This methodology is based on modeling the execution environment of a program. Such a model is then used to build countermeasures. The paper justifies the need for a more structured approach to protect programs against code injection attacks: we examine advanced techniques for injecting code into C and C++ programs and we discuss state-of-the-art (often ad hoc) approaches that typically protect singular memory locations. We validate our methodology by building countermeasures that prevent attacks by protecting a broad variety of memory locations that may be used by attackers to perform code injections. The paper evaluates our approach and discusses ongoing and future work.\",\"PeriodicalId\":247477,\"journal\":{\"name\":\"Third IEEE International Workshop on Information Assurance (IWIA'05)\",\"volume\":\"7 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third IEEE International Workshop on Information Assurance (IWIA'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWIA.2005.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third IEEE International Workshop on Information Assurance (IWIA'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIA.2005.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A methodology for designing countermeasures against current and future code injection attacks
This paper proposes a methodology to develop countermeasures against code injection attacks, and validates the methodology by working out a specific countermeasure. This methodology is based on modeling the execution environment of a program. Such a model is then used to build countermeasures. The paper justifies the need for a more structured approach to protect programs against code injection attacks: we examine advanced techniques for injecting code into C and C++ programs and we discuss state-of-the-art (often ad hoc) approaches that typically protect singular memory locations. We validate our methodology by building countermeasures that prevent attacks by protecting a broad variety of memory locations that may be used by attackers to perform code injections. The paper evaluates our approach and discusses ongoing and future work.