离散有理切比雪夫近似求根方法的应用

ACM-SE 18 Pub Date : 1980-03-24 DOI:10.1145/503838.503873
D. McAllister, S. Pizer
{"title":"离散有理切比雪夫近似求根方法的应用","authors":"D. McAllister, S. Pizer","doi":"10.1145/503838.503873","DOIUrl":null,"url":null,"abstract":"Root finding algorithms are shown to be applicable for finding best rational Chebyshev approximations over finite point sets when the denominator of the approximating function is bounded below by a positive constant. The methods are applicable to approximation in several variables and are shown to be competitive with the differential correction algorithm.","PeriodicalId":431590,"journal":{"name":"ACM-SE 18","volume":"438 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1980-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of root finding methods for discrete rational Chebyshev approximation\",\"authors\":\"D. McAllister, S. Pizer\",\"doi\":\"10.1145/503838.503873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Root finding algorithms are shown to be applicable for finding best rational Chebyshev approximations over finite point sets when the denominator of the approximating function is bounded below by a positive constant. The methods are applicable to approximation in several variables and are shown to be competitive with the differential correction algorithm.\",\"PeriodicalId\":431590,\"journal\":{\"name\":\"ACM-SE 18\",\"volume\":\"438 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1980-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM-SE 18\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/503838.503873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-SE 18","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/503838.503873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当逼近函数的分母以正常数为界时,求根算法适用于求有限点集上的最佳有理切比雪夫近似。该方法适用于多个变量的近似,与微分校正算法相比具有一定的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of root finding methods for discrete rational Chebyshev approximation
Root finding algorithms are shown to be applicable for finding best rational Chebyshev approximations over finite point sets when the denominator of the approximating function is bounded below by a positive constant. The methods are applicable to approximation in several variables and are shown to be competitive with the differential correction algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信