协同移动边缘计算的任务管理

Li-Tse Hsieh, Hang Liu, Yang Guo, Robert Gazda
{"title":"协同移动边缘计算的任务管理","authors":"Li-Tse Hsieh, Hang Liu, Yang Guo, Robert Gazda","doi":"10.1109/SEC50012.2020.00051","DOIUrl":null,"url":null,"abstract":"This paper investigates the task management for cooperative mobile edge computing (MEC), where a set of geographically distributed heterogeneous edge nodes not only cooperate with remote cloud data centers but also help each other to jointly process tasks and support real-time IoT applications at the edge of the network. Especially, we address the challenges in optimizing assignment of the tasks to the nodes under dynamic network environments when the task arrivals, node computing capabilities, and network states are nonstationary and unknown a priori. We propose a novel stochastic framework to model the interactions of the involved entities, including the edge-to-edge horizontal cooperation and the edge-to-cloud vertical cooperation. The task assignment problem is formulated and the algorithm is developed based on online reinforcement learning to optimize the performance for task processing while capturing various dynamics and heterogeneities of node computing capabilities and network conditions with no requirement for prior knowledge of them. Further, by leveraging the structure of the underlying problem, a post-decision state is introduced and a function decomposition technique is proposed, which are incorporated with reinforcement learning to reduce the search space and computation complexity. The evaluation results demonstrate that the proposed online learning-based scheme outperforms the state-of-the-art benchmark algorithms.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Task Management for Cooperative Mobile Edge Computing\",\"authors\":\"Li-Tse Hsieh, Hang Liu, Yang Guo, Robert Gazda\",\"doi\":\"10.1109/SEC50012.2020.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the task management for cooperative mobile edge computing (MEC), where a set of geographically distributed heterogeneous edge nodes not only cooperate with remote cloud data centers but also help each other to jointly process tasks and support real-time IoT applications at the edge of the network. Especially, we address the challenges in optimizing assignment of the tasks to the nodes under dynamic network environments when the task arrivals, node computing capabilities, and network states are nonstationary and unknown a priori. We propose a novel stochastic framework to model the interactions of the involved entities, including the edge-to-edge horizontal cooperation and the edge-to-cloud vertical cooperation. The task assignment problem is formulated and the algorithm is developed based on online reinforcement learning to optimize the performance for task processing while capturing various dynamics and heterogeneities of node computing capabilities and network conditions with no requirement for prior knowledge of them. Further, by leveraging the structure of the underlying problem, a post-decision state is introduced and a function decomposition technique is proposed, which are incorporated with reinforcement learning to reduce the search space and computation complexity. The evaluation results demonstrate that the proposed online learning-based scheme outperforms the state-of-the-art benchmark algorithms.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了协同移动边缘计算(MEC)的任务管理,在MEC中,一组地理分布的异构边缘节点不仅与远程云数据中心合作,而且相互帮助,共同处理任务,支持网络边缘的实时物联网应用。特别地,我们解决了在动态网络环境下,当任务到达、节点计算能力和网络状态是非平稳和先验未知时,如何优化任务分配给节点的挑战。我们提出了一种新的随机框架来模拟相关实体之间的相互作用,包括边缘到边缘的水平合作和边缘到云的垂直合作。提出了基于在线强化学习的任务分配问题和算法,在不需要先验知识的情况下,捕捉节点计算能力和网络条件的各种动态和异构性,优化任务处理的性能。进一步,利用潜在问题的结构,引入决策后状态,并提出函数分解技术,将其与强化学习相结合,以减少搜索空间和计算复杂度。评估结果表明,所提出的基于在线学习的方案优于最先进的基准算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task Management for Cooperative Mobile Edge Computing
This paper investigates the task management for cooperative mobile edge computing (MEC), where a set of geographically distributed heterogeneous edge nodes not only cooperate with remote cloud data centers but also help each other to jointly process tasks and support real-time IoT applications at the edge of the network. Especially, we address the challenges in optimizing assignment of the tasks to the nodes under dynamic network environments when the task arrivals, node computing capabilities, and network states are nonstationary and unknown a priori. We propose a novel stochastic framework to model the interactions of the involved entities, including the edge-to-edge horizontal cooperation and the edge-to-cloud vertical cooperation. The task assignment problem is formulated and the algorithm is developed based on online reinforcement learning to optimize the performance for task processing while capturing various dynamics and heterogeneities of node computing capabilities and network conditions with no requirement for prior knowledge of them. Further, by leveraging the structure of the underlying problem, a post-decision state is introduced and a function decomposition technique is proposed, which are incorporated with reinforcement learning to reduce the search space and computation complexity. The evaluation results demonstrate that the proposed online learning-based scheme outperforms the state-of-the-art benchmark algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信