一个可确定的微积分:初步报告

V. Pratt
{"title":"一个可确定的微积分:初步报告","authors":"V. Pratt","doi":"10.1109/SFCS.1981.4","DOIUrl":null,"url":null,"abstract":"We describe a mu-calculus which amounts to modal logic plus a minimization operator, and show that its satisfiability problem is decidable in exponential time. This result subsumes corresponding results for propositional dynamic logic with test and converse, thus supplying a better setting for those results. It also encompasses similar results for a logic of flowgraphs. This work provides an intimate link between PDL as defined by the Segerberg axioms and the mu-calculi of de Bakker and Park.","PeriodicalId":224735,"journal":{"name":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"A decidable mu-calculus: Preliminary report\",\"authors\":\"V. Pratt\",\"doi\":\"10.1109/SFCS.1981.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a mu-calculus which amounts to modal logic plus a minimization operator, and show that its satisfiability problem is decidable in exponential time. This result subsumes corresponding results for propositional dynamic logic with test and converse, thus supplying a better setting for those results. It also encompasses similar results for a logic of flowgraphs. This work provides an intimate link between PDL as defined by the Segerberg axioms and the mu-calculi of de Bakker and Park.\",\"PeriodicalId\":224735,\"journal\":{\"name\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1981.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1981.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

我们描述了一个模态逻辑加极小算子的模微积分,并证明了它的可满足性问题在指数时间内是可决定的。这一结果将命题动态逻辑的相应结果纳入了检验和反命题,从而为这些结果提供了更好的设置。它也包含了流程图逻辑的类似结果。这项工作提供了由Segerberg公理定义的PDL与de Bakker和Park的mu- calculus之间的密切联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A decidable mu-calculus: Preliminary report
We describe a mu-calculus which amounts to modal logic plus a minimization operator, and show that its satisfiability problem is decidable in exponential time. This result subsumes corresponding results for propositional dynamic logic with test and converse, thus supplying a better setting for those results. It also encompasses similar results for a logic of flowgraphs. This work provides an intimate link between PDL as defined by the Segerberg axioms and the mu-calculi of de Bakker and Park.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信