基于秩信息融合的挑战性眼图像识别

M. Monwar, B. Kumar, Vishnu Naresh Boddeti, J. Smereka
{"title":"基于秩信息融合的挑战性眼图像识别","authors":"M. Monwar, B. Kumar, Vishnu Naresh Boddeti, J. Smereka","doi":"10.1109/ICCI-CC.2013.6622241","DOIUrl":null,"url":null,"abstract":"Under challenging imaging conditions which include lower resolution, occlusion, motion and de-focus blur, iris recognition performance degrades. In such conditions ocular region has been suggested as a new biometric modality which has the ability to overcome some of the above mentioned drawbacks. In this work, we investigate the performance of rank level fusion approach that fuses the outputs of three ocular region matching algorithms, namely, Probabilistic Deformation Model (PDM), modified Scale-Invariant Feature Transform (m-SIFT) and Gradient Orientation Histogram (GOH), employed for recognizing challenging ocular images in the Face and Ocular Challenge Series (FOCS) dataset. We investigate different rank fusion schemes including the highest rank, Borda count, plurality voting and Markov chain and demonstrate that rank-level fusion can lead to improved recognition performance.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Rank information fusion for challenging ocular image recognition\",\"authors\":\"M. Monwar, B. Kumar, Vishnu Naresh Boddeti, J. Smereka\",\"doi\":\"10.1109/ICCI-CC.2013.6622241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under challenging imaging conditions which include lower resolution, occlusion, motion and de-focus blur, iris recognition performance degrades. In such conditions ocular region has been suggested as a new biometric modality which has the ability to overcome some of the above mentioned drawbacks. In this work, we investigate the performance of rank level fusion approach that fuses the outputs of three ocular region matching algorithms, namely, Probabilistic Deformation Model (PDM), modified Scale-Invariant Feature Transform (m-SIFT) and Gradient Orientation Histogram (GOH), employed for recognizing challenging ocular images in the Face and Ocular Challenge Series (FOCS) dataset. We investigate different rank fusion schemes including the highest rank, Borda count, plurality voting and Markov chain and demonstrate that rank-level fusion can lead to improved recognition performance.\",\"PeriodicalId\":130244,\"journal\":{\"name\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2013.6622241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在具有挑战性的成像条件下,包括低分辨率,遮挡,运动和离焦模糊,虹膜识别性能下降。在这种情况下,眼区已被建议作为一种新的生物识别方式,它具有克服上述一些缺点的能力。在这项工作中,我们研究了秩级融合方法的性能,该方法融合了三种眼部区域匹配算法的输出,即概率变形模型(PDM)、改进的尺度不变特征变换(m-SIFT)和梯度方向直方图(GOH),用于识别人脸和眼部挑战系列(FOCS)数据集中的挑战性眼部图像。我们研究了最高等级、Borda计数、多数投票和马尔可夫链等不同的等级融合方案,并证明了等级融合可以提高识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rank information fusion for challenging ocular image recognition
Under challenging imaging conditions which include lower resolution, occlusion, motion and de-focus blur, iris recognition performance degrades. In such conditions ocular region has been suggested as a new biometric modality which has the ability to overcome some of the above mentioned drawbacks. In this work, we investigate the performance of rank level fusion approach that fuses the outputs of three ocular region matching algorithms, namely, Probabilistic Deformation Model (PDM), modified Scale-Invariant Feature Transform (m-SIFT) and Gradient Orientation Histogram (GOH), employed for recognizing challenging ocular images in the Face and Ocular Challenge Series (FOCS) dataset. We investigate different rank fusion schemes including the highest rank, Borda count, plurality voting and Markov chain and demonstrate that rank-level fusion can lead to improved recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信