一种新的基于分片的异步多任务模型原位分析方法

Philippe P. Pébaÿ, G. Borghesi, H. Kolla, Janine Bennett, Sean Treichler
{"title":"一种新的基于分片的异步多任务模型原位分析方法","authors":"Philippe P. Pébaÿ, G. Borghesi, H. Kolla, Janine Bennett, Sean Treichler","doi":"10.1145/3144769.3144775","DOIUrl":null,"url":null,"abstract":"We present the current status of our work towards a scalable, asynchronous many-task, in situ statistical analysis engine using the Legion runtime system, expanding upon earlier work, that was limited to a prototype implementation with a proxy mini-application as a surrogate for a full-scale scientific simulation code. In contrast, we have more recently integrated our in situ analysis engines with S3D, a full-size scientific application, and conducted numerical tests therewith on the largest computational platform currently available for DOE science applications. The goal of this article is thus to describe the SPMD-Legion methodology we devised in this context, and compare the data aggregation technique deployed herein to the approach taken within our previous work.","PeriodicalId":107517,"journal":{"name":"Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Shard-Based Approach for Asynchronous Many-Task Models for In Situ Analysis\",\"authors\":\"Philippe P. Pébaÿ, G. Borghesi, H. Kolla, Janine Bennett, Sean Treichler\",\"doi\":\"10.1145/3144769.3144775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the current status of our work towards a scalable, asynchronous many-task, in situ statistical analysis engine using the Legion runtime system, expanding upon earlier work, that was limited to a prototype implementation with a proxy mini-application as a surrogate for a full-scale scientific simulation code. In contrast, we have more recently integrated our in situ analysis engines with S3D, a full-size scientific application, and conducted numerical tests therewith on the largest computational platform currently available for DOE science applications. The goal of this article is thus to describe the SPMD-Legion methodology we devised in this context, and compare the data aggregation technique deployed herein to the approach taken within our previous work.\",\"PeriodicalId\":107517,\"journal\":{\"name\":\"Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3144769.3144775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3144769.3144775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们展示了我们目前的工作状态,即使用Legion运行时系统实现可扩展的、异步的、多任务的原位统计分析引擎,扩展了早期的工作,这些工作仅限于使用代理迷你应用程序作为全尺寸科学模拟代码的代理的原型实现。相比之下,我们最近将我们的原位分析引擎与全尺寸科学应用程序S3D集成在一起,并在目前可用于DOE科学应用的最大计算平台上进行了数值测试。因此,本文的目标是描述我们在此上下文中设计的SPMD-Legion方法,并将此处部署的数据聚合技术与我们以前工作中采用的方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Shard-Based Approach for Asynchronous Many-Task Models for In Situ Analysis
We present the current status of our work towards a scalable, asynchronous many-task, in situ statistical analysis engine using the Legion runtime system, expanding upon earlier work, that was limited to a prototype implementation with a proxy mini-application as a surrogate for a full-scale scientific simulation code. In contrast, we have more recently integrated our in situ analysis engines with S3D, a full-size scientific application, and conducted numerical tests therewith on the largest computational platform currently available for DOE science applications. The goal of this article is thus to describe the SPMD-Legion methodology we devised in this context, and compare the data aggregation technique deployed herein to the approach taken within our previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信