Ghazanfar Latif, J. Alghazo, Loay Alzubaidi, M. Naseer, Yazan Alghazo
{"title":"基于深度卷积神经网络的统一多语言手写数字识别","authors":"Ghazanfar Latif, J. Alghazo, Loay Alzubaidi, M. Naseer, Yazan Alghazo","doi":"10.1109/ASAR.2018.8480289","DOIUrl":null,"url":null,"abstract":"Deep learning systems have recently gained importance as the architecture of choice in artificial intelligence (AI). Handwritten numeral recognition is essential for the development of systems that can accurately recognize digits in different languages which is a challenging task due to variant writing styles. This is still an open area of research for developing an optimized Multilanguage writer independent technique for numerals. In this paper, we propose a deep learning architecture for the recognition of handwritten Multilanguage (mixed numerals belongs to multiple languages) numerals (Eastern Arabic, Persian, Devanagari, Urdu, Western Arabic). The overall accuracy of the combined Multilanguage database was 99.26% with a precision of 99.29% on average. The average accuracy of each individual language was found to be 99.322%. Results indicate that the proposed deep learning architecture produces better results compared to methods suggested in the previous literature.","PeriodicalId":165564,"journal":{"name":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Deep Convolutional Neural Network for Recognition of Unified Multi-Language Handwritten Numerals\",\"authors\":\"Ghazanfar Latif, J. Alghazo, Loay Alzubaidi, M. Naseer, Yazan Alghazo\",\"doi\":\"10.1109/ASAR.2018.8480289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning systems have recently gained importance as the architecture of choice in artificial intelligence (AI). Handwritten numeral recognition is essential for the development of systems that can accurately recognize digits in different languages which is a challenging task due to variant writing styles. This is still an open area of research for developing an optimized Multilanguage writer independent technique for numerals. In this paper, we propose a deep learning architecture for the recognition of handwritten Multilanguage (mixed numerals belongs to multiple languages) numerals (Eastern Arabic, Persian, Devanagari, Urdu, Western Arabic). The overall accuracy of the combined Multilanguage database was 99.26% with a precision of 99.29% on average. The average accuracy of each individual language was found to be 99.322%. Results indicate that the proposed deep learning architecture produces better results compared to methods suggested in the previous literature.\",\"PeriodicalId\":165564,\"journal\":{\"name\":\"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAR.2018.8480289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAR.2018.8480289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Convolutional Neural Network for Recognition of Unified Multi-Language Handwritten Numerals
Deep learning systems have recently gained importance as the architecture of choice in artificial intelligence (AI). Handwritten numeral recognition is essential for the development of systems that can accurately recognize digits in different languages which is a challenging task due to variant writing styles. This is still an open area of research for developing an optimized Multilanguage writer independent technique for numerals. In this paper, we propose a deep learning architecture for the recognition of handwritten Multilanguage (mixed numerals belongs to multiple languages) numerals (Eastern Arabic, Persian, Devanagari, Urdu, Western Arabic). The overall accuracy of the combined Multilanguage database was 99.26% with a precision of 99.29% on average. The average accuracy of each individual language was found to be 99.322%. Results indicate that the proposed deep learning architecture produces better results compared to methods suggested in the previous literature.